

UC-8410-LX User’s Manual

First Edition, October 2008

www.moxa.com/product

© 2008 Moxa Inc. All rights reserved.
Reproduction without permission is prohibited.

http://www.moxa.com/product�

UC-8410-LX User’s Manual
The software described in this manual is furnished under a license agreement and may be used only in

accordance with the terms of that agreement.

Copyright Notice

Copyright © 2008 Moxa Inc.
All rights reserved.

Reproduction without permission is prohibited.

Trademarks

MOXA is a registered trademark of Moxa Inc.
All other trademarks or registered marks in this manual belong to their respective manufacturers.

Disclaimer

Information in this document is subject to change without notice and does not represent a commitment on the
part of Moxa.

Moxa provides this document “as is,” without warranty of any kind, either expressed or implied, including, but
not limited to, its particular purpose. Moxa reserves the right to make improvements and/or changes to this
manual, or to the products and/or the programs described in this manual, at any time.

Information provided in this manual is intended to be accurate and reliable. However, Moxa assumes no
responsibility for its use, or for any infringements on the rights of third parties that may result from its use.

This product might include unintentional technical or typographical errors. Changes are periodically made to the
information herein to correct such errors, and these changes are incorporated into new editions of the
publication.

Technical Support Contact Information
www.moxa.com/support

Moxa Americas:
Toll-free: 1-888-669-2872
Tel: +1-714-528-6777
Fax: +1-714-528-6778

Moxa China (Shanghai office):
Toll-free: 800-820-5036
Tel: +86-21-5258-9955
Fax: +86-10-6872-3958

Moxa Europe:
Tel: +49-89-3 70 03 99-0
Fax: +49-89-3 70 03 99-99

Moxa Asia-Pacific:
Tel: +886-2-8919-1230
Fax: +886-2-8919-1231

http://www.moxa.com/support�

Table of Contents
Chapter 1 Introduction ..1-1

Overview.. 1-2
Software Architecture .. 1-2

Journaling Flash File System (JFFS2) .. 1-3
Software Features ... 1-4

Chapter 2 Getting Started ...2-1
Powering on the UC-8410 ... 2-2
Connecting the UC-8410 to a PC... 2-2

Serial Console... 2-2
Telnet Console.. 2-3
SSH Console... 2-5

Configuring the Ethernet Interface .. 2-6
Modifying Network Settings with the Serial Console .. 2-6
Modifying Network Settings over the Network.. 2-7

Test Program─Developing Hello.c ... 2-8
Installing the Tool Chain (Linux) ... 2-8
Checking the Flash Memory Space .. 2-8
Compiling Hello.c .. 2-9
Uploading and Running the “Hello” Program .. 2-10

Chapter 3 Managing Embedded Linux ..3-1
System Version Information... 3-2
Firmware Upgrade ... 3-2

Upgrading the Firmware... 3-2
Loading Factory Defaults ... 3-5

Enabling and Disabling Daemons.. 3-5
Setting the Run-Level .. 3-8
Setting the System Time .. 3-9

TZ variable ... 3-9
/etc/timezone... 3-11

Adjusting the System Time...3-11
Setting the Time Manually ... 3-11
NTP Client.. 3-12
Updating the Time Automatically .. 3-13

Cron—Daemon to Execute Scheduled Commands ... 3-13
Connecting Peripherals .. 3-14

USB Mass Storage.. 3-14
CF Mass Storage... 3-14

Chapter 4 Managing Communication ..4-1
Telnet/FTP ... 4-2
DNS ... 4-2
Web Service—Apache ... 4-3
IPTABLES ... 4-5
NAT.. 4-10

NAT Example... 4-10
Enabling NAT at Bootup .. 4-11

Dial-up Service—PPP...4-11

PPPoE .. 4-15
NFS (Network File System) Client .. 4-17

Setting up the UC-8410 as an NFS Client .. 4-17
Mail.. 4-17
SNMP .. 4-18
OpenVPN... 4-18
Package Management—ipkg ... 4-26

Chapter 5 Programmer’s Guide..5-1
Flash Memory Map.. 5-2
Linux Tool Chain Introduction... 5-2
Debugging with GDB .. 5-4
Device API... 5-4
RTC (Real Time Clock) ... 5-4
Buzzer .. 5-5
WDT (Watch Dog Timer) .. 5-5
Digital I/O.. 5-9
UART... 5-13
SRAM.. 5-15
Make File Example .. 5-17
Software Lock.. 5-17

Appendix A System Commands... A-1
Busybox (V1.10.4): Linux normal command utility collection .. A-1

File manager .. A-1
Editor ... A-2
Network ... A-2
Process... A-2
Modules ... A-3
Other .. A-3
Special Moxa Utilities ... A-4

11
Chapter 1 Introduction

Welcome to the Moxa UC-8400 Series of RISC-based communication platforms.

The UC-8410 embedded computer comes with 8 RS-232/422/485 serial ports, 3 Ethernet ports, 4
digital input channels, 4 digital output channels, a CompactFlash socket, and 2 USB 2.0 ports.

The UC-8410 computer uses the Intel XScale IXP-435 533 MHz RISC CPU. This powerful
computing engine supports several useful communication functions, but will not generate too
much heat. The built-in 16 MB NORFlash ROM can be used to store the operating system, and
256 MB SDRAM gives you enough memory to run your application software directly on the
UC-8410. Moreover, the 32 MB NAND Flash provides the capacity for data storage.

The UC-8410 computer supports RS-232/422/485 serial ports, digital I/O, and has three LAN
ports, making it ideal as a communication platform for industrial applications that require network
redundancy.

Pre-installed with the Linux 2.6 platform, the UC-8410 provides an open software operating
system for software program development. Software written for a desktop PC can be easily ported
to the UC-8410 platform by using a common compiler, without needing to modify the code. This
makes the UC-8410 an optimal solution for your industrial applications with the minimal cost and
effort.

In addition to the standard model, a wide temperature version (-40 to 75°C) of the UC-8410 is also
available for use in harsh industrial environments.

In this chapter, we cover the following topics:

 Overview
 Software Architecture

 Journaling Flash File System (JFFS2)
 Software Features

UC-8410-LX User’s Manual Introduction

 1-2

Overview
The UC-8410 computer, which features a RISC CPU, RAM memory, serial ports for connecting
RS-232/422/485 devices, and 3 10/100 Mbps Ethernet ports, is designed for embedded
applications.

The UC-8410 uses an Intel XScale IXP-435 533 Mhz RISC CPU. Unlike the X86 CPU, which
uses a CISC design, the RISC architecture and modern semiconductor technology provide this
computer with a powerful computing engine and communication functions, but without generating
a lot of heat. The built-in 16 MB NOR Flash ROM can be used to store the operating system, and
256 MB of SDRAM gives you enough memory to run your application software directly on the
UC-8410. Moreover, the 32 MB NAND Flash provides the capacity for data storage. In addition,
the network capability provided by the 3 LAN ports built into the RISC CPU combined with the
ability to control connected serial devices makes the UC-8410 an ideal communication platform
for data acquisition and industrial control applications.

The UC-8410’s pre-installed open source Linux operating system can run software written for
desktop PCs, provided the software is ported to the computer with a GNU cross compiler. The
process is easy, straightforward, and your programmer will not need to modify the source code.
The OS, device drivers (e.g., Ethernet, SRAM, watchdog, and Buzzer control) and your own
applications, can all be stored in the NOR Flash memory.

Software Architecture
The Linux operating system that comes pre-installed on the UC-8410 follows the standard Linux
architecture, making it easy to run programs that follow the POSIX standard. Program porting is
done with the GNU Tool Chain provided by Moxa. In addition to Standard POSIX APIs, device
drivers for the buzzer, SRAM and watchdog controls, and UART are also included in the Linux
OS.

AP

API

Protocol
Stack

Device
Driver

Microkernel

User Application Daemon (Apache, Telnet, FTPD, SNMP)

Application Interface (POSIX, Socket, Secure Socket)

TCP, IP, UDP, CMP, ARP, HTTP, SNMP, SMTP

PCMCIA, CF, WLAN, USB, UART, RTC, LCM, Keypad

Memory control, Schedule, Process

RS-232/422/485, Ethernet, PCMCIA, CompactFlash, USB

File
System

Hardware

O
S

K
er

ne
l

UC-8410-LX User’s Manual Introduction

 1-3

The UC-8410’s built-in Flash ROM is divided into Boot Loader, Linux Kernel, Root File
System, and User Root File System partitions.

In order to prevent user applications from crashing the Root File System, the UC-8410 uses a
specially designed Root File System with Protected Configuration for emergency use. This
Root File System comes with serial and Ethernet communication capability for users to load the
Factory Default Image file. The user directory saves the user’s settings and application.

To improve system reliability, the UC-8410 has a built-in mechanism that prevents the system
from crashing. When the Linux kernel boots up, the kernel will mount the root file system for read
only, and then enable services and daemons. During this time, the kernel will start searching for
system configuration parameters via rc or inittab.

Normally, the kernel uses the Root File System to boot up the system. The Root File System is
protected, and cannot be changed by the user, providing a “safe” zone.

For more information about memory map and programming, refer to Chapter 5, “Programmer’s
Guide.”

Journaling Flash File System (JFFS2)
The User Root File System in the flash memory is formatted with the Journaling Flash File
System (JFFS2). The formatting process places a compressed file system in the flash memory,
transparent to the user.

The Journaling Flash File System (JFFS2), which was developed by Axis Communications in
Sweden, puts a file system directly on the flash, instead of emulating a block device. It is designed
for use on flash-ROM chips and recognizes the special write requirements of a flash-ROM chip.
JFFS2 implements wear-leveling to extend the life of the flash disk, and stores the flash directory
structure in the RAM. A log-structured file system is maintained at all times. The system is always
consistent, even if it encounters crashes or improper power-downs, and does not require fsck (file
system check) on boot-up.

JFFS2 is the newest version of JFFS. It provides improved wear-leveling and garbage-collection
performance, improved RAM footprint and response to system-memory pressure, improved
concurrency and support for suspending flash erases, marking of bad sectors with continued use of
the remaining good sectors (which enhances the write-life of the devices), native data compression
inside the file system design, and support for hard links.

The key features of JFFS2 are:

• Targets the Flash ROM directly
• Robustness
• Consistency across power failures
• No integrity scan (fsck) is required at boot time after normal or abnormal shutdown
• Explicit wear leveling
• Transparent compression

Although JFFS2 is a journaling file system, this does not preclude the loss of data. The file system
will remain in a consistent state after power failures and will always be mountable. However, if the
board is powered down during a write then the incomplete write will be rolled back on the next
boot, but writes that have already been completed will not be affected.

Additional information about JFFS2 is available at:

http://sources.redhat.com/jffs2/jffs2.pdf
http://developer.axis.com/software/jffs/
http://www.linux-mtd.infradead.org/

http://sources.redhat.com/jffs2/jffs2.pdf�
http://developer.axis.com/software/jffs/�
http://www.linux-mtd.infradead.org/�

UC-8410-LX User’s Manual Introduction

 1-4

Software Features
Operating System
Boot Loader Redboot
Kernel Linux 2.6.23
Protocol Stack ARP, PPP, CHAP, PAP, IPv4, ICMP, TCP, UDP, DHCP, FTP, SNMP

V1/V2, HTTP, NTP, NFS, SMTP, SSH 1.0/2.0, SSL, Telnet, PPPoE,
OpenVPN

File System JFFS2, NFS, Ext2, Ext3, VFAT/FAT
OS shell command bash
Busybox Linux normal command utility collection
Utilities
tinylogin login and user manager utility
telnet telnet client program
ftp FTP client program
smtpclient email utility
scp Secure file transfer Client Program
Daemons
pppd dial in/out over serial port daemon
snmpd snmpd agent daemon
telnetd telnet server daemon
inetd TCP server manager program
ftpd ftp server daemon
apache web server daemon
sshd secure shell server
openvpn virtual private network
Linux Tool Chain
Gcc (V4.2.1) C/C++ Cross Compiler
GDB (V6.3) Source Level Debug Server
Glibc (V2.2.5) POSIX standard C library

22
Chapter 2 Getting Started

In this chapter, we explain how to connect the UC-8410, turn on the power, and then get started
with programming and using other functions.

The following topics are covered:

 Powering on the UC-8410
 Connecting the UC-8410 to a PC

 Serial Console
 Telnet Console
 SSH Console

 Configuring the Ethernet Interface
 Modifying Network Settings with the Serial Console
 Modifying Network Settings over the Network

 Test Program─Developing Hello.c
 Installing the Tool Chain (Linux)
 Checking the Flash Memory Space
 Compiling Hello.c
 Uploading and Running the “Hello” Program

UC-8410-LX User’s Manual Getting Started

 2-2

Powering on the UC-8410
Connect the SG wire to the Shielded Contact located in the upper left corner of the UC-8410, and
then power on the computer by connecting it to the power adaptor. It takes about 30 to 60 seconds
for the system to boot up. Once the system is ready, the Ready LED will light up, and the model
name of the computer will appear on the LCM display.

ATTENTION

After connecting the UC-8410 to the power supply, it will take about 16 seconds for the
operating system to boot up. The green Ready LED will not turn on until the operating system is
ready.

Connecting the UC-8410 to a PC
There are two ways to connect the UC-8410 to a PC: directly through the serial console port, or by
Telnet over the network.

Serial Console
The serial console port gives users a convenient way of connecting to the UC-8410’s console
utility. This method is particularly useful when using the computer for the first time. The signal is
transmitted over a direct serial connection, so you do not need to know either of its 3 IP addresses
in order to connect to the UC-8410.

Use the serial console port settings shown below.

Baudrate 115200 bps
Parity None
Data bits 8
Stop bits 1
Flow Control None
Terminal VT100

UC-8410-LX User’s Manual Getting Started

 2-3

Once the connection is established, the following window will open.

To log in, type the Login name and password as requested. The default values are both root:

Login: root
Password: root

Telnet Console
If you know at least one of the IP addresses and netmasks, you can use Telnet to connect to the
UC-8410’s console utility. The default IP address and Netmask for each of the ports are given
below:

 Default IP Address Netmask
LAN 1 192.168.3.127 255.255.255.0
LAN 2 192.168.4.127 255.255.255.0
LAN 3 192.168.5.127 255.255.255.0

Use a cross-over Ethernet cable to connect directly from your PC to the UC-8410. You should first
modify your PC’s IP address and netmask so that your PC is on the same subnet as one of the
UC-8410’s LAN ports. For example, if you connect to LAN 1, you can set your PC’s IP address to
192.168.3.126 and netmask to 255.255.255.0. If you connect to LAN 2, you can set your PC’s IP
address to 192.168.4.126 and netmask to 255.255.255.0.

To connect to a hub or switch connected to your local LAN, use a straight-through Ethernet cable.
The default IP addresses and netmasks are shown above. To log in, type the Login name and
password as requested. The default values are both root:

Login: root
Password: root

UC-8410-LX User’s Manual Getting Started

 2-4

You can proceed with configuring network settings of the target computer when you reach the
bash command shell. Configuration instructions are given in the next section.

ATTENTION

Serial Console Reminder
Remember to choose VT100 as the terminal type. Use cable CBL-4PINDB9F-150, which comes
with the UC-8410, to connect to the serial console port.
Telnet Reminder
When connecting to the UC-8410 over a LAN, you must configure your PC’s Ethernet IP
address to be on the same subnet as the UC-8410 you wish to connect to. If you do not get
connected on the first try, re-check the IP settings, and then unplug and re-plug the UC-8410’s
power cord.

UC-8410-LX User’s Manual Getting Started

 2-5

SSH Console
The UC-8410 supports an SSH console to provide users with better security options.

Windows Users
Click on the link http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html to download
PuTTY (free software) to set up an SSH console for the UC-8410 in a Windows environment. The
following figure shows a simple example of the configuration that is required.

Linux Users
From a Linux machine, use the “ssh” command to access the UC-8410’s Console utility via SSH.

#ssh 192.168.3.127

Select yes to complete the connection.
[root@bee_notebook root]# ssh 192.168.3.127
The authenticity of host ‘192.168.3.127 (192.168.3.127)’ can’t be established.
RSA key fingerprint is 8b:ee:ff:84:41:25:fc:cd:2a:f2:92:8f:cb:1f:6b:2f.
Are you sure you want to continue connection (yes/no)? yes_

NOTE SSH provides better security compared to Telnet for accessing the UC-8410’s console utility
over the network.

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html�

UC-8410-LX User’s Manual Getting Started

 2-6

Configuring the Ethernet Interface
The network settings of the UC-8410 can be modified with the serial console, or online over the
network.

Modifying Network Settings with the Serial Console
In this section, we use the serial console to configure network settings of the target computer.

1. Follow the instructions given in a previous section to access the console utility of the target
computer via the serial console port, and then type #cd /etc/network to change directory.
root@Moxa:# cd /etc/network/
root@Moxa:/etc/network/#

2. Type #vi interfaces to edit the network configuration file with vi editor. You can configure
the UC-8410’s Ethernet ports for static or dynamic (DHCP) IP addresses.

Static IP addresses:

As shown below, 3 network addresses need to be modified: address, network, netmask, and
broadcast. The default IP addresses are 192.168.3.127 for LAN1, 192.168.4.127 for LAN2,
and 192.168.5.127 for LAN3, with default netmasks of 255.255.255.0.

We always want the loopback interface.

auto eth0 eth1 eth2 eth3 eth4 lo
iface lo inet loopback

embedded ethernet LAN1
iface eth0 inet static
 address 192.168.3.127
 network 192.168.3.0
 netmask 255.255.255.0
 broadcast 192.168.3.255

embedded ethernet LAN2
iface eth1 inet static
 address 192.168.4.127
 network 192.168.4.0
 netmask 255.255.255.0
 broadcast 192.168.4.255

embedded ethernet LAN3
iface eth2 inet static
 address 192.168.5.127
 network 192.168.5.0

UC-8410-LX User’s Manual Getting Started

 2-7

Dynamic IP Addresses:

By default, the UC-8410 is configured for “static” IP addresses. To configure LAN ports to
request an IP address dynamically, replace static with dhcp and then delete the address,
network, netmask, and broadcast lines.

Default Setting for LAN1 Dynamic Setting using DHCP
iface eth0 inet static
 address 192.168.3.127
 network: 192.168.3.0
 netmask 255.255.255.0
 broadcast 192.168.3.255

iface eth0 inet dhcp

Auto eth0 eth1 lo
iface lo inet loopback

iface eth0 inet dhcp

iface eth1 inet dhcp

3. After the boot settings of the LAN interface have been modified, issue the following command
to activate the LAN settings immediately:

#/etc/init.d/networking restart

ATTENTION

After changing the IP settings, use the networking restart command to activate the new IP
address.

Modifying Network Settings over the Network
IP settings can be activated over the network, but the new settings will not be saved to the flash
ROM without modifying the file /etc/network/interfaces.

For example, type the command #ifconfig eth0 192.168.1.1 to change the IP address of LAN1 to
192.168.1.1.
root@Moxa:# ifconfig eth0 192.168.1.1
root@Moxa:/etc/network/#

UC-8410-LX User’s Manual Getting Started

 2-8

Test Program─Developing Hello.c
Step 1: Connect the UC-8410 to a Linux PC.
Step 2: Install the Tool Chain (GNU Cross Compiler &

glibc).
Step 3: Set the cross compiler and glibc environment

variables.
Step 4: Code and compile the program.
Step 5: Download the program to the UC-8410 via FTP or

NFS.
Step 6: Debug the program
 If bugs are found, return to Step 4.
 If no bugs are found, continue with Step 7
Step 7: Back up the user directory (distribute the program to

additional UC-8410 units if needed).

Cross Compiler

Installing the Tool Chain (Linux)
The PC must have the Linux operating system pre-installed before installing the UC-8410 GNU
Tool Chain. Redhat 7.3/8.0, Fedora core, and compatible versions are recommended. The Tool
Chain requires about 100 MB of hard disk space on your PC. The UC-8410 Tool Chain software is
located on the UC-8410 CD. To install the Tool Chain, insert the CD into your PC and then issue
the following commands:

#mount /dev/cdrom /mnt/cdrom
#/mnt/cdrom/tool-chain/Linux/arm-linux_2.0.sh

The Tool Chain will be installed automatically on your Linux PC within a few minutes. Before
compiling the program, be sure to set the following path first, since the Tool Chain files, including
the compiler, link, library, and include files, are located in this directory.

PATH=/usr/local/arm-linux/bin:$PATH

Setting the path allows you to run the compiler from any directory.

Checking the Flash Memory Space
The UC-8410 uses a specially designed root file system. Only /tmp, /etc, /home, /usr/local/bin,
/usr/local/sbin, /usr/local/libexec, and /usr/local/lib directories are writable. Others are read-only.
The writable directories are mounted on /dev/mtdblock4. If the /dev/mtdblock4 is full, you will not
be able to save data to the Flash ROM. Use the following command to calculate the amount of
“Available” flash memory:

/>df –h

UC-8410-LX User’s Manual Getting Started

 2-9

root@Moxa:/# df -h
Filesystem Size Used Available Use% Mounted on
rootfs 13.4M 9.8M 3.5M 74% /
/dev/root 13.4M 9.8M 3.5M 74% /
/dev/ram15 1.7M 19.0k 1.6M 1% /dev
/dev/ram0 499.0k 18.0k 456.0k 4% /var
/dev/mtdblock4 32.0M 1.9M 30.1M 6% /tmp
/dev/mtdblock4 32.0M 1.9M 30.1M 6% /home
/dev/mtdblock4 32.0M 1.9M 30.1M 6% /etc
tmpfs 252.5M 0 252.5M 0% /dev/shm
/dev/sdb1 483.4M 57.9M 425.5M 12% /var/sdb
root@Moxa:/#

If there isn’t enough “Available” space for your application, you will need to delete some existing
files. To do this, connect your PC to the UC-8410 with the console cable, and then use the console
utility to delete the files from the UC-8410’s flash memory.

Compiling Hello.c
The CD contains several sample programs. Here we use Hello.c to show you how to compile and
run your applications. Type the following commands from your PC to copy the files used for this
example from the CD to your computer’s hard drive:

cd /tmp/
mkdir example
cp –r /mnt/cdrom/example/* /tmp/example

To compile the program, go to the hello subdirectory and issue the following commands:

#cd example/hello
#make

You should receive the following response:
[root@localhost hello]# make
xscale-linux-gcc –o hello-release hello.c
xscale-linux-strip –s hello-release
xscale-linux-gcc –ggdb -o hello-debug hello.c
[root@localhost hello]# _

Next, execute hello.exe to generate hello-release and hello-debug, which are described below:

hello-release—an IXP platform execution file (created specifically to run on the UC-8410)

hello-debug—an IXP platform GDB debug server execution file (see Chapter 5 for details about
the GDB debug tool).

ATTENTION

Be sure to type the #make command from within the /tmp/example/hello directory, since the
UC-8410’s tool chain puts a specially designed Makefile in that directory. This special Makefile
uses the xscale-linux-gcc compiler to compile the hello.c source code for the Xscale
environment. If you type the #make command from any other directory, Linux will use the x86
compiler (for example, cc or gcc). Refer to Chapter 5 to see a Make file example.

UC-8410-LX User’s Manual Getting Started

 2-10

Uploading and Running the “Hello” Program
Use the following command to upload hello-release to the UC-8410 via FTP.

1. From the PC, type:

#ftp 192.168.3.127

2. Use the bin command to set the transfer mode to binary mode, and then put command to
initiate the file transfer:

ftp> bin
ftp> put hello-release

3. From the UC-8410, type:

chmod +x hello-release
./hello-release

The word Hello will be printed on the screen.
root@Moxa:~# ./hello-release
Hello

33
Chapter 3 Managing Embedded Linux

This chapter includes information about version control, deployment, updates, and peripherals.

In this chapter, we cover the following topics:

 System Version Information
 Firmware Upgrade

 Upgrading the Firmware
 Loading Factory Defaults

 Enabling and Disabling Daemons
 Setting the Run-Level
 Setting the System Time

 TZ variable
 /etc/timezone

 Adjusting the System Time
 Setting the Time Manually
 NTP Client
 Updating the Time Automatically

 Cron—Daemon to Execute Scheduled Commands
 Connecting Peripherals

 USB Mass Storage
 CF Mass Storage

UC-8410-LX User’s Manual Managing Embedded Linux

 3-2

System Version Information
To determine the hardware capability of your UC-8410 and what kind of software functions are
supported, check which version of the firmware your UC-8410 is running. Contact Moxa to
determine the hardware version. You will need the Production S/N (Serial number), which is
located on the UC-8410’s bottom label.

To check the kernel version, type:

#kversion

 192.168.3.127 – PuTTY

root@Moxa:~# kversion
UC8410 version 1.0
root@Moxa:~#
root@Moxa:/# kversion -a
UC8410 version 1.0 Build 08091716
root@Moxa:~#

Firmware Upgrade

Upgrading the Firmware
The UC-8410’s bootloader, kernel, and root file system are combined into one firmware file,
which can be downloaded from Moxa’s website (www.moxa.com). The name of the file has the
form FWR_uc8400_Va.b.c_Build_YYMMDDHH.hfm, with “a.b.c” indicating the firmware
version and YYMMDDHH indicating the build date. To upgrade the firmware, download the
firmware file to a PC, and then transfer the file to the UC-8410 unit via a serial console or Telnet
console connection.

ATTENTION

Upgrading the firmware will erase all data on the Flash ROM
If you are using the ramdisk to store code for your applications, beware that updating the
firmware will erase all of the data on the Flash ROM. You should back up your application files
and data before updating the firmware.

UC-8410-LX User’s Manual Managing Embedded Linux

 3-3

Since different Flash disks have different sizes, it’s a good idea to check the size of your Flash disk
before upgrading the firmware, or before using the disk to store your application and data files.
Use the #df –h command to list the size of each memory block, and how much free space is
available in each block.

 192.168.3.127 – PuTTY

root@Moxa:/# df -h
Filesystem Size Used Available Use% Mounted on
rootfs 13.4M 9.8M 3.5M 74% /
/dev/root 13.4M 9.8M 3.5M 74% /
/dev/ram15 1.7M 19.0k 1.6M 1% /dev
/dev/ram0 499.0k 18.0k 456.0k 4% /var
/dev/mtdblock4 32.0M 1.9M 30.1M 6% /tmp
/dev/mtdblock4 32.0M 1.9M 30.1M 6% /home
/dev/mtdblock4 32.0M 1.9M 30.1M 6% /etc
tmpfs 252.5M 0 252.5M 0% /dev/shm
/dev/sdb1 483.4M 57.9M 425.5M 12% /var/sdb
root@Moxa:/# /dev/s
root@Moxa:/# upramdisk
root@Moxa:/# df -h
Filesystem Size Used Available Use% Mounted on
/dev/mtdblock2 14.0M 11.2M 2.8M 80% /
/dev/ram15 1.7M 18.0k 1.6M 1% /dev
/dev/ram0 499.0k 34.0k 440.0k 7% /var
/dev/mtdblock3 15.8M 2.6M 13.1M 17% /tmp
/dev/mtdblock3 15.8M 2.6M 13.1M 17% /home
/dev/mtdblock3 15.8M 2.6M 13.1M 17% /etc
/dev/ram1 38.7M 13.0k 36.7M 0% /mnt/ramdisk
root@Moxa:/# cd /mnt/ramdisk/
root@Moxa:/mnt/ramdisk#

The following instructions give the steps required to save the firmware file to the UC-8410’s RAM
disk, and then upgrade the firmware.

1. Type the following commands to enable the RAM disk:

#upramdisk
#cd /mnt/ramdisk

2. Type the following commands to use the UC-8410’s built-in FTP client to transfer the
firmware file (FWR_uc8400_Va.b.c_Build_YYMMDDHH.hfm) from the PC to the
UC-8410:

/mnt/ramdisk> ftp <destination PC’s IP>
Login Name: xxxx
Login Password: xxxx
ftp> bin
ftp> get FWR_uc8400_Va.b.c_Build_YYMMDDHH.hfm

UC-8410-LX User’s Manual Managing Embedded Linux

 3-4

 192.168.3.127 – PuTTY

root@Moxa:/mnt/ramdisk# ftp 192.168.3.193
Connected to 192.168.3.193 (192.168.3.193).
220 TYPSoft FTP Server 1.10 ready…
Name (192.168.3.193:root): root
331 Password required for root.
Password:
230 User root logged in.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd newsw
250 CWD command successful. “/C:/ftproot/newsw/” is current directory.
ftp> bin
200 Type set to I.
ftp> ls
200 Port command successful.
150 Opening data connection for directory list.
drw-rw-rw- 1 ftp ftp 0 Nov 30 10:03 .
drw-rw-rw- 1 ftp ftp 0 Nov 30 10:03 .
-rw-rw-rw- 1 ftp ftp 12904012 Nov 29 10:24

FWR_uc8400_Va.b.c_Build_YYMMDDHH.hfm
226 Transfer complete.
ftp> get FWR_uc8400_Va.b.c_Build_YYMMDDHH.hfm
local: FWR_uc8400_Va.b.c_Build_YYMMDDHH.hfm remote:

FWR_uc8400_Va.b.c_Build_YYMMDDHH.hfm
200 Port command successful.
150 Opening data connection for FWR_uc8400_Va.b.c_Build_YYMMDDHH.hfm
226 Transfer complete.
12904012 bytes received in 2.17 secs (5925.8 kB/s)
ftp>

3. Next, use the upgradehfm command to upgrade the kernel and root file system:

#upgradehfm FWR_uc8400_Va.b.c_Build_YYMMDDHH.hfm

 192.168.3.127 – PuTTY

root@Moxa:/mnt/ramdisk# upgradehfm FWR_uc8400_Va.b.c_Build_YYMMDDHH.hfm
Moxa UC-8400 Upgrade firmware utility version 1.0.
To check source firmware file context.
The source firmware file conext is OK.
This step will upgrade firmware. All the data on flash will be destroyed.
Do you want to continue? (Y/N) :
Now upgrade the file [redboot].
Format MTD device [/dev/mtd0] ...
MTD device [/dev/mtd0] erase 128 Kibyte @ 60000 -- 100% complete.
Wait to write file ...
Completed 100%
Now upgrade the file [kernel].
Format MTD device [/dev/mtd1] ...
MTD device [/dev/mtd1] erase 128 Kibyte @ 1a0000 -- 100% complete.
Wait to write file ...
Completed 100%
Now upgrade the file [root-file-system].
Format MTD device [/dev/mtd2] ...
MTD device [/dev/mtd2] erase 128 Kibyte @ e00000 -- 100% complete.
Wait to write file ...
Completed 100%
Now upgrade the file [directory].
Format MTD device [/dev/mtd5] ...
MTD device [/dev/mtd5] erase 128 Kibyte @ 20000 -- 100% complete.
Wait to write file ...
Completed 100%
Now upgrade the new configuration file.
Upgrade the firmware is OK. Rebooting

UC-8410-LX User’s Manual Managing Embedded Linux

 3-5

Loading Factory Defaults
Press the reset button for more than 5 seconds to force the system to load the factory default
settings. All files in the /home, /etc, /usr/local/bin, /usr/local/sbin, /usr/local/lib, /usr/local/libexec,
and /tmp directories will be deleted. While pressing the reset button, during the first 5 seconds the
ready-light will blink once each second. If you continue pressing the button after 5 seconds have
passed, the ready-light will turn off, indicating that the factory defaults have been loaded.

ATTENTION

Reset-to-default will erase all data stored in /dev/mtdblock4
If you have stored data in the writable partition, you will need to back up these files before
resetting the system to default. On the UC-8410, the directories /tmp, /etc, /usr/local/bin,
/usr/local/sbin, /usr/local/lib, /usr/local/libexec, and /home are mounted on /dev/mtdblock4. This
means that all of the data stored in these directories will be destroyed after resetting to default.

Enabling and Disabling Daemons
The following daemons are enabled when the UC-8410 boots up for the first time.

snmpd SNMP Agent daemon
telnetd Telnet Server / Client daemon
inetd Internet Daemons
ftpd FTP Server / Client daemon
sshd Secure Shell Server daemon
httpd Apache WWW Server daemon

UC-8410-LX User’s Manual Managing Embedded Linux

 3-6

Type the command “ps” to list all processes currently running.

 192.168.3.127 – PuTTY

root@Moxa:~# cd /etc
root@Moxa:/etc# ps
� � ��?K PID USER VSZ STAT COMMAND
 1 root 1316 S init [3]
 2 root 0 SW< [kthreadd]
 3 root 0 SW< [ksoftirqd/0]
 4 root 0 SW< [events/0]
 5 root 0 SW< [khelper]
 30 root 0 SW< [kblockd/0]
 33 root 0 SW< [kseriod]
 52 root 0 SW [pdflush]
 53 root 0 SW [pdflush]
 54 root 0 SW< [kswapd0]
 55 root 0 SW< [aio/0]
 613 root 0 SW< [mtdblockd]
 652 root 0 SW< [ixp400_eth time]
 655 root 0 SW< [ixp400_eth time]
 657 root 0 DW< [EthMac Recovery]
 667 root 0 SW< [rpciod/0]
 728 root 0 SW< [khubd]
 773 root 0 SW< [scsi_eh_0]
 774 root 0 SW< [usb-storage]
 788 root 0 SWN [jffs2_gcd_mtd4]
 814 root 0 SW [ixp400 eth0]
 820 root 0 SW [ixp400 eth1]
 834 root 1360 S /bin/inetd
 858 root 12536 S /usr/bin/httpd -k start -d /etc/apache
 861 bin 1300 S /bin/portmap
 867 root 2412 S /bin/sh --login
 872 root 1360 S /bin/snmpd -c public
 878 root 3508 S /bin/sshd -f /etc/ssh/sshd_config
 881 root 1292 S /bin/reportip
 883 nobody 12560 S /usr/bin/httpd -k start -d /etc/apache
 884 nobody 12560 S /usr/bin/httpd -k start -d /etc/apache
 885 nobody 12560 S /usr/bin/httpd -k start -d /etc/apache
 886 nobody 12560 S /usr/bin/httpd -k start -d /etc/apache
 887 nobody 12560 S /usr/bin/httpd -k start -d /etc/apache

To run a private daemon, edit the file rc.local, as follows:

#cd /etc/rc.d
#vi rc.local

 192.168.3.127 – PuTTY

root@Moxa:~# cd /etc/rc.d
root@Moxa:/etc/rc.d# vi rc.local

Next, use vi editor to edit your application program. We use the sample program tcps2-release,
and set it to run in the background.

 192.168.3.127 – PuTTY

!/bin/sh
Add you want to run daemon
/root/tcps2-release &~

UC-8410-LX User’s Manual Managing Embedded Linux

 3-7

The following daemons will be enabled after you reboot the system.

 192.168.3.127 – PuTTY

root@Moxa:~# ps –ef
PID USER VSZ STAT COMMAND
 1 root 1316 S init [3]
 2 root 0 SW< [kthreadd]
 3 root 0 SW< [ksoftirqd/0]
 4 root 0 SW< [events/0]
 5 root 0 SW< [khelper]
 30 root 0 SW< [kblockd/0]
 33 root 0 SW< [kseriod]
 52 root 0 SW [pdflush]
 53 root 0 SW [pdflush]
 54 root 0 SW< [kswapd0]
 55 root 0 SW [aio/0]
 613 root 0 SW [mtdblockd]
652 root 0 SW [ixp400_eth time]
 655 root 0 SW [ixp400_eth time]
 657 root 0 DW [Ethmac Recovery]
 666 root 0 SW [rpciod/0]
 727 root 0 SW< [khubd]
 772 root 0 SW< [scsi_eh_0]
 773 root 0 SW< [usb-storage]
 788 root 0 SWN< [jffs2_gcd_mtd4]
809 root 0 SW [ixp400 eth0]
815 root 0 SW [ixp400 eth1]
 829 root 1360 S /bin/inetd
 832 bin 1300 S /bin/portmap
 838 root 2428 S /bin/sh --login
 843 root 1360 S /bin/snmpd -c public
867 root 3508 S /bin/sshd -f/etc/ssh/sshd_config
873 root 7284 S /usr/bin/httpd -k start -d/etc/apache
876 root 1292 S /bin/reportip
878 nobody 7308 S /usr/bin/httpd -k start -d/etc/apache
879 nobody 7308 S /usr/bin/httpd -k start -d/etc/apache
880 nobody 7308 S /usr/bin/httpd –k start –d/etc/apache
881 nobody 7308 S /usr/bin/httpd –k start –d/etc/apache
882 nobody 7380 S /usr/bin/httpd –k start –d/etc/apache
883 root 1264 S /root/tcps2-release
896 root 2156 R ps

root@Moxa:~#

UC-8410-LX User’s Manual Managing Embedded Linux

 3-8

Setting the Run-Level
In this section, we outline the steps you should take to set the Linux run-level and execute requests.
Use the following command to enable or disable settings:

 192.168.3.127 – PuTTY

root@Moxa:/ect/rc.d/rc3.d# ls
S20snmpd S55ssh S99showreadyled
S25nfs-server S99rmnologin
root@Moxa:/etc/rc.d/rc3.d#

#cd /etc/rc.d/init.d

Edit a shell script to execute /root/tcps2-release and save to tcps2 as an example.

#cd /etc/rc.d/rc3.d
#ln –s /etc/rc.d/init.d/tcps2 S60tcps2

SxxRUNFILE stands for
 S: start the run file while linux boots up.
 xx: a number between 00-99. Smaller numbers have a higher priority.
 RUNFILE: the file name.

 192.168.3.127 – PuTTY

root@Moxa:/ect/rc.d/rc3.d# ls
S20snmpd S55ssh S99showreadyled
S25nfs-server S99rmnologin
root@Moxa:/ect/rc.d/rc3.d# ln –s /root/tcps2-release S60tcps2
root@Moxa:/ect/rc.d/rc3.d# ls
S20snmpd S55ssh S99showreadyled
S25nfs-server S99rmnologin S60tcps2
root@Moxa:/etc/rc.d/rc3.d#

KxxRUNFILE stands for
 K: start the run file while Linux shuts down or halts.
 xx: a number between 00-99. Smaller numbers have a higher priority.
 RUNFILE: the file name.

To remove the daemon, use the following command to remove the run file from /etc/rc.d/rc3.d:

#rm –f /etc/rc.d/rc3.d/S60tcps2

UC-8410-LX User’s Manual Managing Embedded Linux

 3-9

Setting the System Time
There are two ways to support the timezone configuration on a Moxa embedded computer. One is
using the TZ variable. The other is using /etc/localtime.

TZ variable
TZ environment variable format

TZ=standardHH[:MM[:SS]][daylight[HH[:MM[:SS]]][,startdate[/start
time], enddate[/endtime]]]

The time kept by the local machine should be a universal standard representation, such as
Greenwich Mean Time (GMT) or Universal Time Coordinated (UTC), hereafter referred to as the
universal reference time. For personal computers that are not sharing data across time zones, the
local time is an adequate standard. To support a universal standard, all MKS utilities assume that
times stored in the file system and returned by the operating system are stored in the universal
reference time, and then translated to local times. The mapping from the universal reference time
to local time is specified by the TZ (time zone) environment variable. If left undefined, the TZ
variable defaults to the current time zone setting of your operating system.

Here are some possible settings for the North American Eastern time
zone:
 TZ=EST5EDT
 TZ=EST0EDT
 TZ=EST0

In the first case, the reference time is GMT and the stored time values are correct worldwide. A
simple change of the TZ variable prints local time correctly, anywhere. In the second case, the
reference time is Eastern Standard Time and the only conversion performed is for Daylight
Savings Time. Therefore, there is no need to adjust the hardware clock for Daylight Savings Time
twice per year. In the third case, the reference time is always the time reported. This is suggested if
the hardware clock on your machine automatically adjusts for Daylight Savings Time, or you insist
on manually resetting the hardware time twice a year.

Other examples include:
 TZ=NST3:30NDT2:00
 TZ=MSEZ-1

The first applies to Newfoundland, whereas the second works in most of Western Europe.

Here are some time zone scenarios that involve Daylight Savings Time
specification:
 TZ=PST0PDT-1
 TZ=ACST-09:30ACDT-10:30,M10.5.0/2:00,M3.5.0/2:00

UC-8410-LX User’s Manual Managing Embedded Linux

 3-10

The first scenario shows the TZ of a person in Seattle who stores local time on a PC, but does not
adjust the clock to agree with Daylight Savings Time. The stated time zone precedes the machine
clock time by one hour when Daylight Savings Time is in effect. The second scenario shows the
TZ set by a person in Australia who sets a PC clock to UTC and never adjusts it. The machine
clock precedes UTC by 9.5 hours when Daylight Savings Time is not in effect, and by 10.5 hours
when in effect. Daylight Savings Time is in effect from 2:00 am on the last Sunday in October
until 2:00 am on the last Sunday in March. Adding in the file /etc/rc.d/rc.local, the timezone setting
will be active after the Moxa embedded computer reboots.

export TZ=your_timezone_setting

Possible values for the TZ environment variables are listed below:

Hours From Greenwich
Mean Time (GMT)

Value Description

0 GMT Greenwich Mean Time
+1 ECT European Central Time
+2 EET European Eastern Time
+2 ART
+3 EAT Saudi Arabia
+3.5 MET Iran
+4 NET
+5 PLT West Asia
+5.5 IST India
+6 BST Central Asia
+7 VST Bangkok
+8 CTT China
+9 JST Japan
+9.5 ACT Central Australia
+10 AET Eastern Australia
+11 SST Central Pacific
+12 NST New Zealand
-11 MIT Samoa
-10 HST Hawaii
-9 AST Alaska
-8 PST Pacific Standard Time
-7 PNT Arizona
-7 MST Mountain Standard Time
-6 CST Central Standard Time
-5 EST Eastern Standard Time
-5 IET Indiana East
-4 PRT Atlantic Standard Time
-3.5 CNT Newfoundland

UC-8410-LX User’s Manual Managing Embedded Linux

 3-11

-3 AGT Eastern South America
-3 BET Eastern South America
-1 CAT Azores

/etc/timezone
The local timezone is stored in /etc/localtime and is used by GNU Library for C (glibc) if the TZ
environment variable is not set. This file is either a copy of /usr/share/zoneinfo/ tree or a symbolic
link to it.

The UC-8410 does not provide /usr/share/zoneinfo/ files, so you need to copy a time zone
information file to the UC-8410 and write over the original local time file.

1. The /usr/share/zoneinfo folder on a PC that is running standard Linux contains several time
zone information files.

2. Copy the time zone file that you want to use to the UC-8410 to overwrite the original
/etc/localtime file.

3. Type a date to check if the new time zone appears.

Adjusting the System Time

Setting the Time Manually
The UC-8410 has two time settings. One is the system time, and the other is the RTC (Real Time
Clock) time kept by the UC-8410’s hardware. Use the #date command to query the current system
time or set a new system time. Use #hwclock to query the current RTC time or set a new RTC
time.

Use the following command to query the system time:
#date

Use the following command to query the RTC time:
#hwclock

Use the following command to set the system time:
#date MMDDhhmmYYYY

MM = Month
DD = Date
hhmm = hour and minute
YYYY = Year

Use the following command to set the RTC time:
#hwclock –w

Write current system time to RTC

UC-8410-LX User’s Manual Managing Embedded Linux

 3-12

The following figure illustrates how to update the system time and set the RTC time.

 192.168.3.127 – PuTTY

root@Moxa:~# date
Fri Jun 23 23:30:31 CST 2000
root@Moxa:~# hwclock
Fri Jun 23 23:30:35 2000 -0.557748 seconds
root@Moxa:~# date 070910002006
Sun Jul 9 10:00:00 CST 2006
root@Moxa:~# hwclock –w
root@Moxa:~# date ; hwclock
Sun Jul 9 10:01:07 CST 2006
Sun Jul 9 10:01:08 2006 -0.933547 seconds
root@Moxa:~#

NTP Client
The UC-8410 has a built-in NTP (Network Time Protocol) client that is used to initialize a time
request to a remote NTP server. Use #ntpdate <NTP server> to update the system time.

#ntpdate time.stdtime.gov.tw
#hwclock –w

Visit http://www.ntp.org for more information about NTP and NTP server addresses.

 10.120.53.100 – PuTTY

root@Moxa:~# date ; hwclock
Sat Jan 1 00:00:36 CST 2000
Sat Jan 1 00:00:37 2000 -0.772941 seconds
root@Moxa:~# ntpdate time.stdtime.gov.tw
 9 Dec 10:58:53 ntpdate[207]: step time server 220.130.158.52 offset 155905087.9
84256 sec
root@Moxa:~# hwclock -w
root@Moxa:~# date ; hwclock
Thu Dec 9 10:59:11 CST 2004
Thu Dec 9 10:59:12 2004 -0.844076 seconds
root@Moxa:~#

ATTENTION

Before using the NTP client utility, check your IP and DNS settings to make sure that an Internet
connection is available. Refer to Chapter 2 for instructions on how to configure the Ethernet
interface, and see Chapter 4 for DNS setting information.

http://www.ntp.org/�

UC-8410-LX User’s Manual Managing Embedded Linux

 3-13

Updating the Time Automatically
In this subsection, we show how to use a shell script to update the time automatically.

Example shell script to update the system time periodically

#!/bin/sh
ntpdate time.nist.gov
You can use the time server’s ip address or domain
name directly. If you use domain name, you must
enable the domain client on the system by updating
/etc/resolv.conf file.
hwclock –w
sleep 100 # Updates every 100 seconds. The min. time is 100 seconds.
Change 100 to a larger number to update RTC less often.

Save the shell script using any file name. E.g., fixtime

How to run the shell script automatically when the kernel boots up

Copy the example shell script fixtime to directory /etc/init.d, and then use

chmod 755 fixtime to change the shell script mode. Next, use vi editor to edit the file /etc/inittab.
Add the following line to the bottom of the file:

ntp : 2345 : respawn : /etc/init.d/fixtime

Use the command #init q to re-init the kernel.

Cron—Daemon to Execute Scheduled Commands
Start Cron from the directory /etc/rc.d/rc.local. It will return immediately, so you do not need to
start it with an ampersand (&) to run in the background.

The Cron daemon will search /etc/cron.d/crontab for crontab files, which are named after
accounts in /etc/passwd.

Cron wakes up every minute, and checks each command to see if it should be run in the current
minute. When executing commands, output is mailed to the owner of the crontab (or to the user
named in the MAILTO environment variable in the crontab, if such a user exists).

Modify the file /etc/cron.d/crontab to set up your scheduled applications. Crontab files have the
following format:

mm h dom mon dow user command
min hour date month week user command
0-59 0-23 1-31 1-12 0-6 (0 is Sunday)

The following example demonstrates how to use Cron.

The following steps show how to use cron to update the system time and RTC time every day at
8:00.

STEP1: Write a shell script named fixtime.sh and save it to /home/.

#!/bin/sh
ntpdate time.nist.gov
hwclock –w
exit 0

UC-8410-LX User’s Manual Managing Embedded Linux

 3-14

STEP2: Change mode of fixtime.sh

#chmod 755 fixtime.sh

STEP3: Modify /etc/cron.d/crontab file to run fixtime.sh at 8:00 every day.

Add the following line to the end of crontab:

* 8 * * * root /home/fixtime.sh

STEP4: Enable the cron daemon manually.

#/etc/init.d/cron start

STEP5: Enable cron when the system boots up.

Add the following line in the file /etc/init.d/rc.local
#/etc/init.d/cron start

Connecting Peripherals

USB Mass Storage
The UC-8410 supports PNP (plug-n-play), and hot pluggability for connecting USB mass storage
devices. The UC-8410 has a built-in auto mount utility that eases the mount procedure. The
connected USB mass storage device will be mounted automatically. You can check the location of
the USB disk by mount command. The UC-8410 will be un-mounted automatically with umount
when the device is disconnected.

ATTENTION

Remember to type the #sync command before you disconnect the USB mass storage device. If
you don’t issue the command, you may lose some data.
Remember to exit the mount directory when you disconnect the USB mass storage device. If you
stay in mount directory, the auto un-mount process will fail. If that happens, type #umount
mount directory to un-mount the USB device manually. For example, type #umount /mnt/sdc.
The UC-8410 only supports certain types of flash disk USB Mass Storage devices. Some USB
flash disks and hard disks may not be compatible with the UC-8410. Check compatibility issues
before you purchase a USB device to connect to the UC-8410.

CF Mass Storage
The UC-8410 Embedded Computer does not support CompactFlash hot swap and PnP (Plug and
Play) function. It is necessary to remove power source first before inserting or removing the
CompactFlash card.The UC-8410 CF card doesn’t support PNP. This means that user need to
mount the CF card manually after inserting the CF mass storage.

You can mount the CF card manually with the command below:

Moxa: ~# mkdir /home/sda

Moxa: ~# mount -t ext2 /dev/sda1 /home/sda

You should umount the CF mass storage before you remove the CF card.
Moxa: ~# umount /home/sda

44
Chapter 4 Managing Communication

In this chapter, we explain how to configure the UC-8410’s various communication functions.

The following topics are covered:

 Telnet/FTP
 DNS
 Web Service—Apache
 IPTABLES
 NAT

 NAT Example
 Enabling NAT at Bootup

 Dial-up Service—PPP
 PPPoE
 NFS (Network File System) Client

 Setting up the UC-8410 as an NFS Client
 Mail
 SNMP
 OpenVPN
 Package Management—ipkg

UC-8410-LX User’s Manual Managing Communication

 4-2

Telnet/FTP
In addition to supporting Telnet client/server and FTP client/server, the UC-8410 also supports
SSH and sftp client/server. To enable or disable the Telnet/ftp server, you first need to edit the file
/etc/inetd.conf.

Enabling the Telnet/ftp server

The following example shows the default content of the file /etc/inetd.conf. The default is to
enable the Telnet/ftp server:

discard dgram udp wait root /bin/discard
discard stream tcp nowait root /bin/discard
telnet stream tcp nowait root /bin/telnetd
ftp stream tcp nowait root /bin/ftpd -l

Disabling the Telnet/ftp server

Disable the daemon by typing ‘#’ in front of the first character of the row to comment out the line.

DNS
The UC-8410 supports DNS client (but not DNS server). To set up DNS client, you need to edit
three configuration files: /etc/hosts, /etc/resolv.conf, and /etc/nsswitch.conf.

/etc/hosts

This is the first file that the Linux system reads to resolve the host name and IP address.

/etc/resolv.conf

This is the most important file that you need to edit when using DNS for the other programs. For
example, before using #ntpdate time.nist.gov to update the system time, you will need to add the
DNS server address to the file. Ask your network administrator which DNS server address you
should use. The DNS server’s IP address is specified with the “nameserver” command. For
example, add the following line to /etc/resolv.conf if the DNS server’s IP address is 168.95.1.1:

nameserver 168.95.1.1

 192.168.3.127 – PuTTY

root@Moxa:/etc# cat resolv.conf

resolv.conf This file is the resolver configuration file
See resolver(5).

#nameserver 192.168.1.16
nameserver 168.95.1.1
nameserver 140.115.1.31
nameserver 140.115.236.10
root@Moxa:/etc#

/etc/nsswitch.conf

This file defines the sequence to resolve the IP address by using /etc/hosts file or /etc/resolv.conf.

UC-8410-LX User’s Manual Managing Communication

 4-3

Web Service—Apache
The Apache web server’s main configuration file is /etc/apache/httpd.conf, with the default
homepage located at /home/httpd/index.html. Save your own homepage to the following
directory:

/home/httpd/htdocs/

Save your CGI page to the following directory:

/home/httpd/cgi-bin/

Before you modify the homepage, use a browser (such as Microsoft Internet Explorer or Mozilla
Firefox) from your PC to test if the Apache Web Server is working. Type the LAN1 IP address in
the browser’s address box to open the homepage. E.g., if the default IP address is still active, type
http://host-ip-address in address box.

To open the default CGI page, type http://host-ip-address/cgi-bin/printenv in your browser’s
address box.

UC-8410-LX User’s Manual Managing Communication

 4-4

To open the default CGI test script report page, type http://host-ip-address/cgi-bin/test-cgi in
your browser’s address box.

ATTENTION

The CGI function is enabled by default. If you want to disable the function, modify the file
/etc/apache/httpd.conf. When you develop your own CGI application, make sure your CGI file
is executable.

 192.168.3.127 – PuTTY

root@Moxa:/usr/www/cgi-bin# ls –al
drwxr—xr-x 2 root root 0 Aug 24 1999
drwxr—xr-x 5 root root 0 Nov 5 16:16
-rwxr—xr-x 1 root root 268 Dec 19 2002 printenv
-rwxr—xr-x 1 root root 757 Aug 24 1999 test-cgi
root@Moxa:/usr/www/cgi-bin#

UC-8410-LX User’s Manual Managing Communication

 4-5

IPTABLES
IPTABLES is an administrative tool for setting up, maintaining, and inspecting the Linux kernel’s
IP packet filter rule tables. Several different tables are defined, with each table containing built-in
chains and user-defined chains.

Each chain is a list of rules that apply to a certain type of packet. Each rule specifies what to do
with a matching packet. A rule (such as a jump to a user-defined chain in the same table) is called a
“target.”

The UC-8410 supports 3 types of IPTABLES table: Filter tables, NAT tables, and Mangle tables:

A. Filter Table—includes three chains:

INPUT chain
OUTPUT chain
FORWARD chain

B. NAT Table—includes three chains:

PREROUTING chain—transfers the destination IP address (DNAT)
POSTROUTING chain—works after the routing process and before the Ethernet device
process to transfer the source IP address (SNAT)
OUTPUT chain—produces local packets

sub-tables

Source NAT (SNAT)—changes the first source packet IP address
Destination NAT (DNAT)—changes the first destination packet IP address
MASQUERADE—a special form for SNAT. If one host can connect to internet, then
other computers that connect to this host can connect to the Internet when it the computer
does not have an actual IP address.
REDIRECT—a special form of DNAT that re-sends packets to a local host independent
of the destination IP address.

C. Mangle Table—includes two chains

PREROUTING chain—pre-processes packets before the routing process.
OUTPUT chain—processes packets after the routing process. It has three extensions—TTL,
MARK, TOS.

UC-8410-LX User’s Manual Managing Communication

 4-6

The following figure shows the IPTABLES hierarchy.

Incoming
Packets

Mangle Table
PREROUTING Chain

NAT Table
PREROUTING Chain

NAT Table
POSTROUTING Chain

Outgoing
Packets

Other Host
Packets

Mangle Table
FORWARD Chain

Filter Table
FORWARD Chain

Mangle Table
POSTROUTING Chain

Local Host
Packets

Mangle Table
INPUT Chain

Filter Table
INPUT Chain

Local
Process

Mangle Table
OUTPUT Chain

NAT Table
OUTPUT Chain

Filter Table
OUTPUT Chain

UC-8410-LX User’s Manual Managing Communication

 4-7

The UC-8410 supports the following sub-modules. Be sure to use the module that matches your
application.

nf_conntrack nf_conntrack_ftp x_tables xt_CLASSIFY
xt_MARK xt_NFLOG xt_NFQUEUE xt_TCPMSS
xt_esp xt_length xt_limit xt_mac
xt_mark xt_multiport xt_pkttype xt_string
xt_tcpmss xt_tcpudp xt_u32 arp_tables
arpt_mangle arptable_filter ip_tables ipt_CLUSTERIP
ipt_ECN ipt_NETMAP ipt_SAME ipt_TTL
ipt_addrtype ipt_ecn ipt_iprange ipt_recent
iptable_filter iptable_mangle iptable_nat nf_conntrack_ipv4
nf_nat nf_nat_ftp nf_nat_snmp_basic
 ipt_ah
 ipt_MASQUERADE
 ipt_tos
 ipt_REDIRECT ipt_ttl
 ipt_REJECT

 ipt_TOS
ipt_LOG ipt_ULOG ipt_owner

NOTE The UC-8410 does NOT support IPV6 and ipchains.

The basic syntax to enable and load an IPTABLES module is as follows:

#lsmod
#modprobe ip_tables
#modprobe iptable_filter

Use lsmod to check if the ip_tables module has already been loaded in the UC-8410. Use
modprobe to insert and enable the module.

Use the following command to load the modules (iptable_filter, iptable_mangle, iptable_nat):

#modprobe iptable_filter

Use iptables, iptables-restore, iptables-save to maintain the database.

NOTE IPTABLES plays the role of packet filtering or NAT. Take care when setting up the IPTABLES
rules. If the rules are not correct, remote hosts that connect via a LAN or PPP may be denied
access. We recommend using the serial console to set up the IPTABLES.

Click on the following links for more information about iptables.

http://www.linuxguruz.com/iptables/
http://www.netfilter.org/documentation/HOWTO//packet-filtering-HOWTO.html

http://www.linuxguruz.com/iptables/�
http://www.netfilter.org/documentation/HOWTO/packet-filtering-HOWTO.html�

UC-8410-LX User’s Manual Managing Communication

 4-8

Since the IPTABLES command is very complex, to illustrate the IPTABLES syntax we have
divided our discussion of the various rules into three categories: Observe and erase chain rules,
Define policy rules, and Append or delete rules.

Observe and erase chain rules
Usage:
iptables [-t tables] [-L] [-n]

-t tables: Table to manipulate (default: ‘filter’); example: nat or filter.
-L [chain]: List List all rules in selected chains. If no chain is selected, all chains are listed.
-n: Numeric output of addresses and ports.

iptables [-t tables] [-FXZ]
-F: Flush the selected chain (all the chains in the table if none is listed).
-X: Delete the specified user-defined chain.
-Z: Set the packet and byte counters in all chains to zero.

Examples:
iptables -L -n
In this example, since we do not use the -t parameter, the system uses the default ‘filter’ table.
Three chains are included: INPUT, OUTPUT, and FORWARD. INPUT chains are accepted
automatically, and all connections are accepted without being filtered.
#iptables –F
#iptables –X
#iptables -Z

Define policy for chain rules
Usage:
iptables [-t tables] [-P] [INPUT, OUTPUT, FORWARD, PREROUTING, OUTPUT, POSTROUTING]
[ACCEPT, DROP]
-P: Set the policy for the chain to the given target.
INPUT: For packets coming into the UC-8410.
OUTPUT: For locally-generated packets.
FORWARD: For packets routed out through the UC-8410.
PREROUTING: To alter packets as soon as they come in.
POSTROUTING: To alter packets as they are about to be sent out.

Examples:
#iptables –P INPUT DROP
#iptables –P OUTPUT ACCEPT
#iptables –P FORWARD ACCEPT
modprobe iptable_nat
#iptables –t nat –P PREROUTING ACCEPT
#iptables –t nat –P OUTPUT ACCEPT
#iptables -t nat –P POSTROUTING ACCEPT

In this example, the policy accepts outgoing packets and denies incoming packets.

UC-8410-LX User’s Manual Managing Communication

 4-9

Append or delete rules:
Usage:
iptables [-t table] [-AI] [INPUT, OUTPUT, FORWARD] [-io interface] [-p tcp, udp, icmp,
all] [-s IP/network] [--sport ports] [-d IP/network] [--dport ports] –j [ACCEPT. DROP]
-A: Append one or more rules to the end of the selected chain.
-I: Insert one or more rules in the selected chain as the given rule number.
-i: Name of an interface via which a packet is going to be received.
-o: Name of an interface via which a packet is going to be sent.
-p: The protocol of the rule or of the packet to check.
-s: Source address (network name, host name, network IP address, or plain IP
 address).
--sport: Source port number.
-d: Destination address.
--dport: Destination port number.
-j: Jump target. Specifies the target of the rules; i.e., how to handle matched packets.
 For example, ACCEPT the packet, DROP the packet, or LOG the packet.

Examples:
Example 1: Accept all packets from lo interface.
iptables –A INPUT –i lo –j ACCEPT

Example 2: Accept TCP packets from 192.168.0.1.
iptables –A INPUT –i eth0 –p tcp –s 192.168.0.1 –j ACCEPT

Example 3: Accept TCP packets from Class C network 192.168.1.0/24.
iptables –A INPUT –i eth0 –p tcp –s 192.168.1.0/24 –j ACCEPT

Example 4: Drop TCP packets from 192.168.1.25.
iptables –A INPUT –i eth0 –p tcp –s 192.168.1.25 –j DROP

Example 5: Drop TCP packets addressed for port 21.
modprobe modprobe xt_tcpudp
iptables –A INPUT –i eth0 –p tcp --dport 21 –j DROP

Example 6: Accept TCP packets from 192.168.0.24 to UC-8410’s port 137, 138, 139
iptables –A INPUT –i eth0 –p tcp –s 192.168.0.24 --dport 137:139 –j ACCEPT

Example 7: Log TCP packets that visit the UC-8410’s port 25.
iptables –A INPUT –i eth0 –p tcp --dport 25 –j LOG

Example 8: Drop all packets from MAC address 01:02:03:04:05:06.
modprobe xt_mac
iptables –A INPUT –i eth0 –p all –m mac -–mac-source 01:02:03:04:05:06 –j DROP

NOTE: In Example 8, remember to issue the command #modprobe ipt_mac first to load the
module ipt_mac.

UC-8410-LX User’s Manual Managing Communication

 4-10

NAT
NAT (Network Address Translation) protocol translates IP addresses used on one network to
different IP addresses used on another network. One network is designated the inside network and
the other is the outside network. Typically, the UC-8410 connects several devices on a network
and maps local inside network addresses to one or more global outside IP addresses, and un-maps
the global IP addresses on incoming packets back into local IP addresses.

NOTE Click the following link for more information about iptables and NAT:
http://www.netfilter.org/documentation/HOWTO/NAT-HOWTO.html

NAT Example
The IP address of LAN1 is changed to 192.168.3.127 (you will need to load the module
ipt_MASQUERADE):

1. #ehco 1 > /proc/sys/net/ipv4/ip_forward
2. #modprobe ip_tables
3. #modprobe iptable_filter
4. #modprobe ip_conntrack
5. #modprobe iptable_nat
6. #modprobe ipt_MASQUERADE
7. #iptables -t nat –A POSTROUTING –o eth0 –j SNAT --to-source 192.168.3.127

or
#iptables –t nat –A POSTROUTING –o eth0 –j MASQUERADE

http://www.netfilter.org/documentation/HOWTO/NAT-HOWTO.html�

UC-8410-LX User’s Manual Managing Communication

 4-11

Enabling NAT at Bootup
In most real world situations, you will want to use a simple shell script to enable NAT when the
UC-8410 boots up. The following script is an example.
#!/bin/bash
If you put this shell script in the /home/nat.sh
Remember to chmod 744 /home/nat.sh
Edit the rc.local file to make this shell startup automatically.
vi /etc/rc.d/rc.local
Add a line in the end of rc.local /home/nat.sh
EXIF=‘eth0’ #This is an external interface for setting up a valid IP address.
EXNET=‘192.168.4.0/24’ #This is an internal network address.
Step 1. Insert modules.
Here 2> /dev/null means the standard error messages will be dump to null device.
modprobe ip_tables 2> /dev/null
modprobe iptable_filter 2> /dev/null
modprobe iptable_nat 2> /dev/null
modprobe ip_conntrack 2> /dev/null
modprobe ip_conntrack_ftp 2> /dev/null
modprobe iptable_nat
modprobe ip_nat_ftp 2> /dev/null
Step 2. Define variables, enable routing and erase default rules.
PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin
export PATH
echo “1” > /proc/sys/net/ipv4/ip_forward
/sbin/iptables -F
/sbin/iptables -X
/sbin/iptables -Z
/sbin/iptables -F -t nat
/sbin/iptables -X -t nat
/sbin/iptables -Z -t nat
/sbin/iptables -P INPUT ACCEPT
/sbin/iptables -P OUTPUT ACCEPT
/sbin/iptables -P FORWARD ACCEPT
/sbin/iptables -t nat -P PREROUTING ACCEPT
/sbin/iptables -t nat -P POSTROUTING ACCEPT
/sbin/iptables -t nat -P OUTPUT ACCEPT
Step 3. Enable IP masquerade.

Dial-up Service—PPP
PPP (Point to Point Protocol) is used to run IP (Internet Protocol) and other network protocols over
a serial link. PPP can be used for direct serial connections (using a null-modem cable) over a
Telnet link, and links established using a modem over a telephone line.

Modem/PPP access is almost identical to connecting directly to a network through the UC-8410’s
Ethernet port. Since PPP is a peer-to-peer system, the UC-8410 can also use PPP to link two
networks (or a local network to the Internet) to create a Wide Area Network (WAN).

UC-8410-LX User’s Manual Managing Communication

 4-12

NOTE Click on the following links for more information about ppp:
http://tldp.org/HOWTO/PPP-HOWTO/index.html
http://axion.physics.ubc.ca/ppp-linux.html

The pppd daemon is used to connect to a PPP server from a Linux system. For detailed
information about pppd see the man page.

Example 1: Connecting to a PPP server over a simple dial-up connection
The following command is used to connect to a PPP server by modem. Use this command for old
ppp servers that prompt for a login name (replace username with the correct name) and password
(replace password with the correct password). Note that debug and defaultroute 192.1.1.17 are
optional.
#pppd connect ‘chat -v “ “ ATDT5551212 CONNECT” “ ogin: username word: password’
/dev/ttyM0 115200 debug crtscts modem defaultroute

If the PPP server does not prompt for the username and password, the command should be entered
as follows. Replace username with the correct username and replace password with the correct
password.
#pppd connect ‘chat -v “ “ ATDT5551212 CONNECT” “ ‘ user username password password
/dev/ttyM0 115200 crtscts modem

The pppd options are described below:
connect ‘chat etc...’
This option gives the command to contact the PPP server. The ‘chat’ program is used to dial a remote computer. The entire
command is enclosed in single quotes because pppd expects a one-word argument for the ‘connect’ option. The options for
‘chat’ are given below:

-v
verbose mode; log what we do to syslog
“ “
Double quotes—don’t wait for a prompt, but instead do (note that you must include a space after
the second quotation mark)
ATDT5551212
Dial the modem, and then ...
CONNECT
Wait for an answer.
“ “
Send a return (null text followed by the usual return)
ogin: username word: password
Log in with username and password.

Refer to the chat man page, chat.8, for more information about the chat utility.
/dev/
Specify the callout serial port.
115200
The baudrate.
Debug
Log status in syslog.

http://tldp.org/HOWTO/PPP-HOWTO/index.html�
http://axion.physics.ubc.ca/ppp-linux.html�

UC-8410-LX User’s Manual Managing Communication

 4-13

Crtscts
Use hardware flow control between the computer and modem (at 115200 this is a must).
Modem
Indicates that this is a modem device; pppd will hang up the phone before and after making the
call.
Defaultroute
Once the PPP link is established, make it the default route; if you have a PPP link to the Internet,
this is probably what you want.
192.1.1.17
This is a degenerate case of a general option of the form x.x.x.x:y.y.y.y. Here x.x.x.x is the local IP
address and y.y.y.y is the IP address of the remote end of the PPP connection. If this option is not
specified, or if just one side is specified, then x.x.x.x defaults to the IP address associated with the
local machine’s hostname (located in /etc/hosts), and y.y.y.y is determined by the remote machine.

Example 2: Connecting to a PPP server over a hard-wired link
If a username and password are not required, use the following command (note that noipdefault is
optional):
#pppd connect ‘chat –v” “ “ “ ‘ noipdefault /dev/ttyM0 19200 crtscts

If a username and password is required, use the following command (note that noipdefault is
optional, and root is both the username and password):
#pppd connect ‘chat –v” “ “ “ ‘ user root password root noipdefault
/dev/ttyM0 19200 crtscts

How to check the connection
Once you’ve set up a PPP connection, there are some steps you can take to test the connection.
First, type:
/sbin/ifconfig

(The folder ifconfig may be located elsewhere, depending on your distribution.) You should be
able to see all of the network interfaces that are UP. ppp0 should be one of them, and you should
recognize the first IP address as your own In addition, the “P-t-P address” (or point-to-point
address) is the address of your server. Here’s what it looks like on one machine:

lo Link encap Local Loopback
 inet addr 127.0.0.1 Bcast 127.255.255.255 Mask 255.0.0.0
 UP LOOPBACK RUNNING MTU 2000 Metric 1
 RX packets 0 errors 0 dropped 0 overrun 0

ppp0 Link encap Point-to-Point Protocol
 inet addr 192.76.32.3 P-t-P 129.67.1.165 Mask 255.255.255.0
 UP POINTOPOINT RUNNING MTU 1500 Metric 1
 RX packets 33 errors 0 dropped 0 overrun 0
 TX packets 42 errors 0 dropped 0 overrun 0

UC-8410-LX User’s Manual Managing Communication

 4-14

Now, type:
ping z.z.z.z

where z.z.z.z is the address of your name server. This should work. Here’s what the response could
look like:

waddington:~$p ping 129.67.1.165
PING 129.67.1.165 (129.67.1.165): 56 data bytes
64 bytes from 129.67.1.165: icmp_seq=0 ttl=225 time=268 ms
64 bytes from 129.67.1.165: icmp_seq=1 ttl=225 time=247 ms
64 bytes from 129.67.1.165: icmp_seq=2 ttl=225 time=266 ms
^C
--- 129.67.1.165 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 247/260/268 ms
waddington:~$

Try typing:
netstat -nr

You should see three routes, similar to the following:

Kernel routing table
Destination Gateway Genmask Flags Metric Ref Use
iface
129.67.1.165 0.0.0.0 255.255.255.255 UH 0 0 6
ppp0
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
0.0.0.0 129.67.1.165 0.0.0.0 UG 0 0 6298
ppp0

If your output looks similar, but does not have the destination 0.0.0.0 line (which refers to the
default route used for connections), you may have run pppd without the ‘defaultroute’ option. At
this point you can try using Telnet, ftp, or finger, bearing in mind that you will need to use numeric
IP addresses unless you’ve set up /etc/resolv.conf correctly.

Setting up a Machine for Incoming PPP Connections
This first example applies to using a modem, and requires authorization with a username and
password.
pppd/dev/ttyM0 115200 crtscts modem 192.168.16.1:192.168.16.2 login auth

You should also add the following line to the file /etc/ppp/pap-secrets:
* * ““ *

The first star (*) lets everyone login. The second star (*) lets every host connect. The pair of
double quotation marks (““) is to use the file /etc/passwd to check the password. The last star (*)
is to let any IP connect.

The following example does not check the username and password:
pppd/dev/ttyM0 115200 crtscts modem 192.168.16.1:192.168.16.2

UC-8410-LX User’s Manual Managing Communication

 4-15

PPPoE
1. Connect the UC-8410’s LAN port to an ADSL modem with a cross-over cable, HUB, or

switch.

2. Log in to the UC-8410 as the root user.

3. Edit the file /etc/ppp/chap-secrets and add the following:
“username@hinet.net” * “password” *

 192.168.3.127 – PuTTY

Secrets for authentication using CHAP
client server secret IP addresses

PPPOE example, if you want to use it, you need to unmark it and modify it
“username@hinet.net” * “password” *

“username@hinet.net” is the username obtained from the ISP to log in to the ISP account.
“password” is the corresponding password for the account.

4. Edit the file /etc/ppp/pap-secrets and add the following:
“username@hinet.net” * “password” *

 192.168.3.127 – PuTTY

support hostname “*” -
stats hostname “*” -

OUTBOUND connections
ATTENTION: The definitions here can allow users to login without a
package already provides this option; make sure you don’t change that.

INBOUND connections

Every regular user can use PPP and has to use passwords from /etc/passwd
* hostname ““ *
“username@hinet.net” * “password” *

PPPOE user example, if you want to use it, you need to unmark it and modify it
#”username@hinet.net” * “password” *

UserIDs that cannot use PPP at all. Check your /etc/passwd and add any
other accounts that should not be able to use pppd!
guest hostname “*” -
master hostname “*” -
root hostname “*” -
support hostname “*” -
stats hostname “*” -

“username@hinet.net” is the username obtained from the ISP to log in to the ISP account.
“password” is the corresponding password for the account.

UC-8410-LX User’s Manual Managing Communication

 4-16

5. Edit the file /etc/ppp/options and add the following line:
plugin pppoe

 192.168.3.127 – PuTTY

Wait for up n milliseconds after the connect script finishes for a valid
PPP packet from the peer. At the end of this time, or when a valid PPP
packet is received from the peer, pppd will commence negotiation by
sending its first LCP packet. The default value is 1000 (1 second).
This wait period only applies if the connect or pty option is used.
#connect-delay <n>

Load the pppoe plugin
plugin /lib/rp-pppoe.so

---<End of File>---

6. Add one of two files: /etc/ppp/options.eth0 or /etc/ppp/options.eth1. The choice depends on
which LAN is connected to the ADSL modem. If you use LAN1 to connect to the ADSL
modem, then add /etc/ppp/options.eth0. If you use LAN2 to connect to the ADSL modem,
then add /etc/ppp/options.eth1. The file context is shown below:

 192.168.3.127 – PuTTY

name username@hinet.net
mtu 1492
mru 1492
defaultroute
noipdefault

Type your username (the one you set in the /etc/ppp/pap-secrets and /etc/ppp/chap-secrets
files) after the “name” option. You may add other options as desired.

7. Set up DNS.

If you are using DNS servers supplied by your ISP, edit the file
/etc/resolv.conf by adding the following lines of code:

 nameserver ip_addr_of_first_dns_server
 nameserver ip_addr_of_second_dns_server

For example:

 nameserver 168..95.1.1
 nameserver 139.175.10.20

8. Use the following command to create a pppoe connection:

pppd eth0

The eth0 is what is connected to the ADSL modem LAN port. The example above uses LAN1.
To use LAN2, type:

pppd eth1

9. Type ifconfig ppp0 to check if the connection is OK or has failed. If the connection is OK,
you will see information about the ppp0 setting for the IP address. Use ping to test the IP.

10. If you want to disconnect it, use the kill command to kill the pppd process.

UC-8410-LX User’s Manual Managing Communication

 4-17

NFS (Network File System) Client
The Network File System (NFS) is used to mount a disk partition on a remote machine, as if it
were on a local hard drive, allowing fast, seamless sharing of files across a network. NFS allows
users to develop applications for the UC-8410, without worrying about the amount of disk space
that will be available. The UC-8410 supports NFS protocol for client.

NOTE Click on the following links for more information about NFS:
http://www.tldp.org/HOWTO/NFS-HOWTO/index.html
http://nfs.sourceforge.net/nfs-howto/client.html
http://nfs.sourceforge.net/nfs-howto/server.html

Setting up the UC-8410 as an NFS Client
The following procedure is used to mount a remote NFS Server.

1. Establish a mount point on the NFS Client site.

2. Mount the remote directory to a local directory.
Steps 1:
#mkdir –p /home/nfs/public

Step 2:
#mount –t nfs NFS_Server(IP):/directory /mount/point

Example
: #mount –t nfs 192.168.3.100/home/public /home/nfs/public

Mail
smtpclient is a minimal SMTP client that takes an email message body and passes it on to an
SMTP server. It is suitable for applications that use email to send alert messages or important logs
to a specific user.

NOTE Click on the following link for more information about smtpclient:
http://www.engelschall.com/sw/smtpclient/

To send an email message, use the ‘smtpclient’ utility, which uses SMTP protocol. Type
#smtpclient –help to see the help message.

Example:
smtpclient –s test –f sender@company.com –S IP_address receiver@company.com
< mail-body-message

-s: The mail subject.
-f: Sender’s mail address
-S: SMTP server IP address

The last mail address receiver@company.com is the receiver’s e-mail address.
mail-body-message is the mail content. The last line of the body of the message should contain
ONLY the period ‘.’ character.

You will need to add your hostname to the file /etc/hosts.

http://www.tldp.org/HOWTO/NFS-HOWTO/index.html�
http://nfs.sourceforge.net/nfs-howto/client.html�
http://nfs.sourceforge.net/nfs-howto/server.html�
http://www.engelschall.com/sw/smtpclient/�

UC-8410-LX User’s Manual Managing Communication

 4-18

SNMP
The UC-8410 has the SNMP V1 (Simple Network Management Protocol) agent software built in.
It supports RFC1317 RS-232 like groups and RFC 1213 MIB-II.

The following simple example allows you to use an SNMP browser on the host site to query the
UC-8410, which is the SNMP agent. The UC-8410 will respond.

debian:~# snmpwalk -v 1 -c public -Cc 192.168.30.127
SNMPv2-MIB::sysDescr.0 = STRING: Linux version 2.6.23.1 (root@UC8400) (gcc version 4.2.1) #1137 Wed Sep 17
16:17:45 EDT 2008
SNMPv2-MIB::sysObjectID.0 = OID: SNMPv2-SMI::enterprises.8691.12.8410
DISMAN-EVENT-MIB::sysUpTimeInstance = Timeticks: (239600) 0:39:56.00
SNMPv2-MIB::sysContact.0 = STRING: Moxa Systems Co., LDT.
SNMPv2-MIB::sysName.0 = STRING: (none)
SNMPv2-MIB::sysLocation.0 = STRING: Unknown
SNMPv2-MIB::sysServices.0 = INTEGER: 6
IF-MIB::ifNumber.0 = INTEGER: 11
IF-MIB::ifIndex.1 = INTEGER: 1
IF-MIB::ifIndex.2 = INTEGER: 2
IF-MIB::ifIndex.3 = INTEGER: 3
IF-MIB::ifIndex.4 = INTEGER: 4
IF-MIB::ifIndex.5 = INTEGER: 5
IF-MIB::ifIndex.6 = INTEGER: 6
IF-MIB::ifIndex.7 = INTEGER: 7
IF-MIB::ifIndex.8 = INTEGER: 8
IF-MIB::ifIndex.9 = INTEGER: 9
IF-MIB::ifIndex.10 = INTEGER: 10
IF-MIB::ifIndex.11 = INTEGER: 11
IF-MIB::ifDescr.1 = STRING: eth0
IF-MIB::ifDescr.2 = STRING: eth1
IF-MIB::ifDescr.3 = STRING: eth2***** SNMP QUERY FINISHED *****

NOTE Click on the following links for more information about MIB II and RS-232 like groups:
http://www.faqs.org/rfcs/rfc1213.html
http://www.faqs.org/rfcs/rfc1317.html

 The UC-8410 does NOT support SNMP trap.

The following tables list the variables supported by the UC-8410.

OpenVPN
OpenVPN provides two types of tunnels for users to implement VPNS: Routed IP Tunnels and
Bridged Ethernet Tunnels. To begin with, check to make sure that the system has a virtual device
/dev/net/tun. If not, issue the following command:
mknod /dev/net/tun c 10 200

An Ethernet bridge is used to connect different Ethernet networks together. The Ethernets are
bundled into one bigger, “logical” Ethernet. Each Ethernet corresponds to one physical interface
(or port) that is connected to the bridge.

On each OpenVPN machine, you should generate a working directory, such as /etc/openvpn,
where script files and key files reside. Once established, all operations will be performed in that
directory.

http://www.faqs.org/rfcs/rfc1213.html�
http://www.faqs.org/rfcs/rfc1317.html�

UC-8410-LX User’s Manual Managing Communication

 4-19

Setup 1: Ethernet Bridging for Private Networks on Different Subnets
1. Set up four machines, as shown in the following diagram.

Host A (B) represents one of the machines that belongs to OpenVPN A (B). The two remote
subnets are configured for a different range of IP addresses. When this setup is moved to a
public network, the external interfaces of the OpenVPN machines should be configured for
static IPs, or connect to another device (such as a firewall or DSL box) first.
openvpn --genkey --secret secrouter.key

Copy the file that is generated to the OpenVPN machine.

2. The openvpn-bridge script file located at “/etc/openvpn/” reconfigures the interface “eth1” as
IP-less, creates logical bridge(s) and TAP interfaces, loads modules, and enables IP
forwarding.
#---------------------------------Start-----------------------------

#!/bin/sh

iface=eth1 # defines the internal interface
maxtap=`expr 1` # defines the number of tap devices. I.e., # of tunnels

IPADDR=
NETMASK=
BROADCAST=

it is not a great idea but this system doesn’t support
/etc/sysconfig/network-scripts/ifcfg-eth1
ifcfg_vpn()
{
 while read f1 f2 f3 f4 r3
 do
 if [“$f1” = “iface” -a “$f2” = “$iface” -a “$f3” = “inet” -a “$f4” =
“static”];then
 i=`expr 0`
 while :
 do
 if [$i -gt 5]; then
 break
 fi
 i=`expr $i + 1`
 read f1 f2

UC-8410-LX User’s Manual Managing Communication

 4-20

 case “$f1” in
 address) IPADDR=$f2
 ;;
 netmask) NETMASK=$f2
 ;;
 broadcast) BROADCAST=$f2
 ;;
 esac
 done
 break
 fi
 done < /etc/network/interfaces
}

get the ip address of the specified interface
mname=
module_up()
{
 oIFS=$IFS
 IFS=‘
 ‘
 FOUND=“no”
 for LINE in `lsmod`
 do
 TOK=`echo $LINE | cut -d’ ‘ -f1`
 if [“$TOK” = “$mname”]; then
 FOUND=“yes”;
 break;
 fi
 done
 IFS=$oIFS

 if [“$FOUND” = “no”]; then
 modprobe $mname
 fi
}

start()
{
 ifcfg_vpn
 if [! \(-d “/dev/net” \)]; then
 mkdir /dev/net
 fi

 if [! \(-r “/dev/net/tun” \)]; then
 # create a device file if there is none
 mknod /dev/net/tun c 10 200
 fi

 # load modules “tun” and “bridge”
 mname=tun
 module_up
 mname=bridge
 module_up
 # create an ethernet bridge to connect tap devices, internal interface
 brctl addbr br0
 brctl addif br0 $iface
 # the bridge receives data from any port and forwards it to other ports.

 i=`expr 0`
 while :
 do
 # generate a tap0 interface on tun
 openvpn --mktun --dev tap${i}

 # connect tap device to the bridge
 brctl addif br0 tap${i}

UC-8410-LX User’s Manual Managing Communication

 4-21

 # null ip address of tap device
 ifconfig tap${i} 0.0.0.0 promisc up

 i=`expr $i + 1`
 if [$i -ge $maxtap]; then
 break
 fi
 done

 # null ip address of internal interface
 ifconfig $iface 0.0.0.0 promisc up

 # enable bridge ip
 ifconfig br0 $IPADDR netmask $NETMASK broadcast $BROADCAST

 ipf=/proc/sys/net/ipv4/ip_forward
 # enable IP forwarding
 echo 1 > $ipf
 echo “ip forwarding enabled to”
 cat $ipf
}

stop() {
 echo “shutdown openvpn bridge.”
 ifcfg_vpn
 i=`expr 0`
 while :
 do
 # disconnect tap device from the bridge
 brctl delif br0 tap${i}
 openvpn --rmtun --dev tap${i}

 i=`expr $i + 1`
 if [$i -ge $maxtap]; then
 break
 fi
 done
 brctl delif br0 $iface
 brctl delbr br0
 ifconfig br0 down
 ifconfig $iface $IPADDR netmask $NETMASK broadcast $BROADCAST
 killall -TERM openvpn
}

case “$1” in
 start)
 start
 ;;
 stop)
 stop
 ;;
 restart)
 stop
 start
 ;;
 *)
 echo “Usage: $0 [start|stop|restart]”
 exit 1
esac
exit 0
#---------------------------------- end -----------------------------

UC-8410-LX User’s Manual Managing Communication

 4-22

3. On machine OpenVPN A, modify the remote address in the configuration file,
/etc/openvpn/tap0-br.conf.
/etc/openvpn/tap0-br.conf
point to the peer
remote 192.168.8.174
dev tap0
secret /etc/openvpn/secrouter.key
cipher DES-EDE3-CBC
auth MD5
tun-mtu 1500
tun-mtu-extra 64
ping 40
up /etc/openvpn/tap0-br.sh

Next, modify the routing table in the /etc/openvpn/tap0-br.sh script file.
#----------------------------------Start------------------------------
#!/bin/sh
/etc/openvpn/tap0-br.sh
value after “-net” is the subnet behind the remote peer
route add -net 192.168.4.0 netmask 255.255.255.0 dev br0
#---------------------------------- end ------------------------------

On machine OpenVPN B, modify the remote address in the configuration file,
/etc/openvpn/tap0-br.conf.
/etc/openvpn/tap0-br.conf
point to the peer
remote 192.168.8.173
dev tap0
secret /etc/openvpn/secrouter.key
cipher DES-EDE3-CBC
auth MD5
tun-mtu 1500
tun-mtu-extra 64
ping 40
up /etc/openvpn/tap0-br.sh

Next, modify the routing table in the /etc/openvpn/tap0-br.sh script file.
#---------------------------------- Start----------------------------
#!/bin/sh
/etc/openvpn/tap0-br.sh
value after “-net” is the subnet behind the remote peer
route add -net 192.168.2.0 netmask 255.255.255.0 dev br0
#---------------------------------- end -----------------------------

Note: Select cipher and authentication algorithms by specifying “cipher” and “auth”. To see
with algorithms are available, type:
openvpn --show-ciphers
openvpn --show—auths

4. After configuring the remote peer, we can load the bridge into kernel, reconfigure eth1, and
enable IP forwarding on both OpenVPN machine.
/etc/openvpn/openvpn-bridge start

Next, start both OpenVPN peers,
openvpn --config /etc/openvpn/tap0-br.conf &

UC-8410-LX User’s Manual Managing Communication

 4-23

If you see the line “Peer Connection Initiated with 192.168.8.173:5000” on each machine, the
connection between OpenVPN machines has been established successfully on UDP port 5000.

Note: You can create link symbols to enable the /etc/openvpn/openvpn-bridge script at boot
time:
ln -s /etc/openvpn/openvpn-bridge /etc/rc.d/rc3.d/S32vpn-br
ln -s /etc/openvpn/openvpn-bridge /etc/rc.d/rc6.d/K32vpn-br

5. On each OpenVPN machine, check the routing table by typing the command:
route

Destination Gateway Genmsk Flags Metric Ref Use Iface
192.168.4.0 * 255.255.255.0 U 0 0 0 br0
192.168.2.0 * 255.255.255.0 U 0 0 0 br0
192.168.8.0 * 255.255.255.0 U 0 0 0 eth0

Interface eth1 is connected to the bridging interface br0, to which device tap0 also connects,
whereas the virtual device tun sits on top of tap0. This ensures that all traffic from internal
networks connected to interface eth1 that come to this bridge write to the TAP/TUN device
that the OpenVPN program monitors. Once the OpenVPN program detects traffic on the
virtual device, it sends the traffic to its peer.

6. To create an indirect connection to Host B from Host A, add the following routing item:
route add –net 192.168.4.0 netmask 255.255.255.0 dev eth0

To create an indirect connection to Host A from Host B, add the following routing item:
route add –net 192.168.2.0 netmask 255.255.255.0 dev eth0

Now ping Host B from Host A by typing:
ping 192.168.4.174

A successful ping indicates that you have created a VPN system that only allows authorized
users from one internal network to access users at the remote site. For this system, all data is
transmitted by UDP packets on port 5000 between OpenVPN peers.

7. To shut down OpenVPN programs, type the command:
/etc/openvpn/openvpn-bridge stop

UC-8410-LX User’s Manual Managing Communication

 4-24

Setup 2: Ethernet Bridging for Private Networks on the Same Subnet
1. Set up four machines as shown in the following diagram:

2. The configuration procedure is almost the same as for the previous example. The only

difference is that you will need to comment out the parameter “up” in
“/etc/openvpn/tap0-br.conf” and “/etc/openvpn/tap0-br.conf”.

Setup 3: Routed IP
1. Set up four machines as shown in the following diagram:

UC-8410-LX User’s Manual Managing Communication

 4-25

2. On machine OpenVPN A, modify the remote address in the configuration file,
/etc/openvpn/tun.conf.
point to the peer
remote 192.168.8.174
dev tun
secret /etc/openvpn/secrouter.key
cipher DES-EDE3-CBC
auth MD5
tun-mtu 1500
tun-mtu-extra 64
ping 40
ifconfig 192.168.2.173 192.168.4.174
up /etc/openvpn/tun.sh

Next, modify the routing table in the /etc/openvpn/tun.sh script file.

#--------------------------------- Start-----------------------------
#!/bin/sh
value after “-net” is the subnet behind the remote peer
route add -net 192.168.4.0 netmask 255.255.255.0 gw $5
#--------------------------------- end ------------------------------

On machine OpenVPN B, modify the remote address in the configuration file,
/etc/openvpn/tun.conf.

remote 192.168.8.173
dev tun
secret /etc/openvpn/secrouter.key
cipher DES-EDE3-CBC
auth MD5
tun-mtu 1500
tun-mtu-extra 64
ping 40
ifconfig 192.168.4.174 192.168.2.173
up /etc/openvpn/tun.sh

Next, modify the routing table in the /etc/openvpn/tun.sh script file.

#--------------------------------- Start----------------------------
#!/bin/sh
value after “-net” is the subnet behind the remote peer
route add -net 192.168.2.0 netmask 255.255.255.0 gw $5
#--------------------------------- end -----------------------------

Note that the parameter “ifconfig” defines the first argument as the local internal interface and
the second argument as the internal interface at the remote peer.

Note that $5 is the argument that the OpenVPN program passes to the script file. Its value is
the second argument of ifconfig in the configuration file.

UC-8410-LX User’s Manual Managing Communication

 4-26

3. Check the routing table after you run the OpenVPN programs, by typing the command:
route

Destination Gateway Genmsk Flags Metric Ref Use Iface
192.168.4.174 * 255.255.255.255 UH 0 0 0 tun0
192.168.4.0 192.168.4.174 255.255.255.0 UG 0 0 0 tun0
192.168.2.0 * 255.255.255.0 U 0 0 0 eth1
192.168.8.0 * 255.255.255.0 U 0 0 0 eth0

Package Management—ipkg
ipkg is a very lightweight package management system. It also allows for dynamic
installation/removal of packages on a running system. Because the disk space is limited, we
provide the software as extension packages. You can use ipkg-cl to install or remove .ipk packages
on the UC-8410-LX.

Install an .ipk package via an .ipk file
Upload the .ipk package to the Moxa embedded computer:

192.168.3.127 – Putty

Moxa:~# scp /mnt/cdrom/utility_tools/ipkg_packages/libphp5_1.0_xscale.ipk
192.168.3.127:/tmp/

Install the uploaded package:

192.168.3.127 – Putty

Moxa:~# ipkg-cl list-install /tmp/libphp5_1.0_xscale.ipk

List the installed packages

192.168.3.127 – Putty

Moxa:~# ipkg-cl list-installed

Remove a package

192.168.3.127 – Putty

Moxa:~# ipkg-cl remove libphp5

55
Chapter 5 Programmer’s Guide

This chapter includes important information for programmers.

The following functions are covered:

 Flash Memory Map
 Linux Tool Chain Introduction
 Debugging with GDB
 Device API
 RTC (Real Time Clock)
 Buzzer
 WDT (Watch Dog Timer)
 Digital I/O
 UART
 SRAM
 Make File Example
 Software Lock

UC-8410 LX User’s Manual Programmer’s Guide

 5-2

Flash Memory Map
Partition sizes are hard coded into the kernel binary. To change partition sizes, you will need to
rebuild the kernel. The flash memory map is shown in the following table.

Address Size Contents
0x00000000 – 0x0005FFFF 640 KB Boot Loader—Read ONLY
0x00060000 – 0x001FFFFF 1.875 MB Kernel object code—Read ONLY
0x00200000 – 0x00DFFFFF 13.375 MB Root file system (JFFS2) —Read ONLY
0x00E00000 – 0x01FCFFFF 32 MB User root file system (JFFS2) —Read/Write
0x01FC0000 – 0x01FDFFFF 128 KB Boot Loader configuration and

directory—Read ONLY
 256 KB SRAM—Read./Write

NOTE 1. The default Moxa file system only enables the network and CF. It lets users recover the user
file system when it fails.

2. The user file system is a complete file system. Users can create and delete directories and
files (including source code and executable files) as needed.

3. Users can create the user file system on the PC host or target platform, and then copy it to
the UC-8410.

Linux Tool Chain Introduction
To ensure that an application will be able to run correctly when installed on the UC-8410, you
must ensure that it is compiled and linked to the same libraries that will be present on the UC-8410.
This is particularly true when the RISC Xscale processor architecture of the UC-8410 differs from
the CISC x86 processor architecture of the host system, but it is also true if the processor
architecture is the same.

The host tool chain that comes with the UC-8410 contains a suite of cross compilers and other
tools, as well as the libraries and headers that are necessary to compile applications for the
UC-8410. The host environment must be running Linux to install the UC-8410 GNU Tool Chain.
We have confirmed that the following Linux distributions can be used to install the tool chain:

Redhat 7.3/8.0/9.0, Fefora core 1/2/3/4/5, Debian 4.0 32 bits platform.

The Tool Chain will need about 836 MB of hard disk space on your PC. The UC-8410 Tool Chain
is located on the UC-8410 CD. To install the Tool Chain, insert the CD into your PC and then
issue the following commands:

#mount /dev/cdrom /mnt/cdrom

#sh /mnt/cdrom/tool-chain/linux/arm-linux_2.0.sh

Wait for a few minutes while the Tool Chain is installed automatically on your Linux PC. Once
the host environment has been installed, add the directory
/opt/montavista/pro/devkit/arm/xscale_be/bin/ to your path and the directory
/opt/montavista/pro/devkit/arm/xscale_be/man/ to your manual path. You can do this temporarily
for the current login session by issuing the following commands:

#export PATH=“/usr/local/arm-linux/bin:$PATH”

#export MANPATH=“/usr/local/arm-linux/man:$MANPATH”

UC-8410 LX User’s Manual Programmer’s Guide

 5-3

Alternatively, you can add the same commands to $HOME/.bash_profile to cause it to take effect
for all login sessions initiated by this user.

Obtaining help
Use the Linux man utility to obtain help on many of the utilities provided by the tool chain. For
example to get help on the arm-linux-gcc compiler, issue the command:

#man arm-linux-gcc

Cross Compiling Applications and Libraries
To compile a simple C application, just use the cross compiler instead of the regular compiler:

#xscale-linux-gcc –o example –Wall –g –O2 example.c

#xscale-linux-strip –s example

#xscale-linux-gcc -ggdb –o example-debug example.c

Tools Available in the Host Environment
Most of the cross compiler tools are the same as their native compiler counterparts, but with an
additional prefix that specifies the target system. In the case of x86 environments, the prefix is
i386-linux- and in the case of the UC-8410 Xscale boards, it is xscale-linux-.

For example, the native C compiler is gcc and the cross C compiler for Xscale in the UC-8410 is
xscale-linux-gcc.

The following cross compiler tools are provided:

ar Manages archives (static libraries)
as Assembler
c++, g++ C++ compiler
cpp C preprocessor
gcc C compiler
gdb Debugger
ld Linker
nm Lists symbols from object files
objcopy Copies and translates object files
objdump Displays information about object files
ranlib Generates indexes to archives (static libraries)
readelf Displays information about ELF files
size Lists object file section sizes
strings Prints strings of printable characters from files (usually object files)
strip Removes symbols and sections from object files (usually debugging information)

UC-8410 LX User’s Manual Programmer’s Guide

 5-4

Debugging with GDB
First use the option -ggdb to compile the program. Use the following steps:

1. To debug a program called hello-debug on the target, use the command:
#gdbserver 192.168.4.142:2000 hello-debug

This is where 2000 is the network port number on which the server waits for a connection
from the client. This can be any available port number on the target. Following this are the
name of the program to be debugged (hello-debug), plus that program’s arguments. Output
similar to the following will be sent to the console:
Process hello-debug created; pid=38

2. Use the following command on the host to change to the directory that contains hello-debug:
cd /my_work_directory/myfilesystem/testprograms

3. Enter the following command:
#ddd --debugger xscale-linux-gdb hello-debug &

4. Enter the following command at the GDB, DDD command prompt:
Target remote 192.168.4.99:2000

The command produces another line of output on the target console, similar to the following:
Remote debugging using 192.168.4.99:2000

192.168.4.99 is the machine’s IP address, and 2000 is the port number. You can now begin
debugging in the host environment using the interface provided by DDD.

5. Set a breakpoint on main by double clicking, or entering b main on the command line.

6. Click the cont button

Device API
The UC-8410 supports control devices with the ioctl system API. You will need to include
<moxadevice.h>, and use the following ioctl function.

int ioctl(int d, int request,…);
 Input: int d - open device node return file handle
 int request – argument in or out

Use the desktop Linux’s man page for detailed documentation:
#man ioctl

RTC (Real Time Clock)
The device node is located at /dev/rtc. The UC-8410 supports Linux standard simple RTC control.
You must include <linux/rtc.h>.

1. Function: RTC_RD_TIME
int ioctl(fd, RTC_RD_TIME, struct rtc_time *time);

Description: read time information from the RTC. It will return the value on argument 3.

2. Function: RTC_SET_TIME
int ioctl(fd, RTC_SET_TIME, struct rtc_time *time);

Description: set RTC time. Argument 3 will be passed to the RTC.

UC-8410 LX User’s Manual Programmer’s Guide

 5-5

Buzzer
The device node is located at /dev/console. The UC-8410 supports Linux standard buzzer control,
with the UC-8410’s buzzer running at a fixed frequency of 100 Hz. You must include <sys/kd.h>.

1. Function: KDMKTONE
ioctl(fd, KDMKTONE, unsigned int arg);

Description: The buzzer’s behavior is determined by the argument arg. The “high word” part
of arg gives the length of time the buzzer will sound, and the “low word” part gives the
frequency.

The buzzer’s on/off behavior is controlled by software. If you call the “ioctl” function, you
MUST set the frequency to 100 Hz. If you use a different frequency, the system could crash.

WDT (Watch Dog Timer)
1. Introduction

The WDT works like a watch dog function. You can enable it or disable it. When the user
enables WDT but the application does not acknowledge it, the system will reboot. You can set
the ack time from a minimum of 50 msec to a maximum of 60 seconds.

2. How the WDT works

The sWatchDog is enabled when the system boots up. The kernel will auto ack it. The user
application can also enable ack. When the user does not ack, it will let the system reboot.

Kernel boot
 …..
 ….
User application running and enable user ack
 ….
 ….

3. The user API

The user application must use include <moxadevic.h>, and link libmoxalib.a. A
makefile example is shown below:
all:
 xscale-linux-gcc –o xxxx xxxx.c -lmoxalib

int swtd_open(void)

Description
If you would like to activate Watchdog for the AP, you must call this function.

Input
None

Output
The return value is file handle. If there is an error, it will return a negative value.

You can get the error using the function errno().

int swtd_enable(int fd, unsigned long time)

Description
Enable the application sWatchDog. You must do an ack after this process.

UC-8410 LX User’s Manual Programmer’s Guide

 5-6

Input
int fd - the file handle, from the swtd_open() return value.

unsigned long time - The time you wish to ack sWatchDog periodically. You
must ack the sWatchDog before timeout. If you do not ack, the system will reboot
automatically. The minimum time is 50 msec, and the maximum time is 60 seconds. The
time unit is msec.

Output
If you receive 0 (zero), it means the function is working. If you receive any other number,
then there is something wrong with this function.

int swtd_disable(int fd)

Description:

Call this function if you would like the AP to stop using the Watchdog.

Input :

int fd - the file handle from swtd_open() return value.

Output:

If you receive 0 (zero), it means the function is working. If you receive any other number,
then there is something wrong with this function.

int swtd_get(int fd, int *mode, unsigned long *time)

Description:

Get current setting values.

mode –

1 for user application enable sWatchDog: need to do ack.

0 for user application disable sWatchdog: does not need to do ack.

time – The time period to ack sWatchDog.

Input :

int fd - the file handle from swtd_open() return value.

int *mode - the function will return the status: enable or disable.

unsigned long *time – the function will return the current time period.

Output:

If you receive 0 (zero), it means the function is working. If you receive any other number,
then there is something wrong with this function.

int swtd_ack(int fd)

Description:

Acknowledge sWatchDog. When the user application enable sWatchDog, it need to call
this function periodically with user predefined time in the application program.

Input :

int fd - the file handle from swtd_open() return value.

UC-8410 LX User’s Manual Programmer’s Guide

 5-7

Output:

If you receive 0 (zero), it means the function is working. If you receive any other number,
then there is something wrong with this function.

int swtd_close(int fd)

Description:

Close the file handle.

Input :

int fd - the file handle from swtd_open() return value.

Output:

If you receive 0 (zero), it means the function is working. If you receive any other number,
then there is something wrong with this function.

4. Special Note

When you “kill the application with -9” or “kill without option” or “Ctrl+c” the kernel will
change to auto ack the sWatchDog.

When your application enables the sWatchDog and does not ack, your application may have a
logical error, or your application has made a core dump. The kernel will not change to auto
ack. This can cause a serious problem, causing your system to reboot again and again.

5. User application example

Example 1:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <moxadevice.h>

int main(int argc, char *argv[])
{
 int fd;

 fd = swtd_open();
 if (fd < 0) {
 printf(“Open sWatchDog device fail !\n”);
 exit(1);
 }
 swtd_enable(fd, 5000); // enable it and set it 5 seconds
 while (1) {
 // do user application want to do
 …..
 ….
 swtd_ack(fd);
 …..
 ….
 }
 swtd_close(fd);
 exit(0);
}

The makefile is shown below:
all:
 xscale-linux-gcc –o xxxx xxxx.c –lmoxalib

Example 2:

UC-8410 LX User’s Manual Programmer’s Guide

 5-8

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <sys/select.h>
#include <sys/time.h>
#include <moxadevice.h>

static void mydelay(unsigned long msec)
{
 struct timeval time;

 time.tv_sec = msec / 1000;
 time.tv_usec = (msec % 1000) * 1000;
 select(1, NULL, NULL, NULL, &time);
}

static int swtdfd;
static int stopflag=0;

static void stop_swatchdog()
{
 stopflag = 1;
}

static void do_swatchdog(void)
{
 swtd_enable(swtdfd, 500);
 while (stopflag == 0) {
 mydelay(250);
 swtd_ack(swtdfd);
 }
 swtd_disable(swtdfd);
 }

int main(int argc, char *argv[])
{
 pid_t sonpid;

 signal(SIGUSR1, stop_swatchdog);
 swtdfd = swtd_open();
 if (swtdfd < 0) {
 printf(“Open sWatchDog device fail !\n”);
 exit(1);
 }
 if ((sonpid=fork()) == 0)
 do_swatchdog();
 // do user application main function
 …..
 …..
 …..
 // end user application
 kill(sonpid, SIGUSR1);
 swtd_close(swtdfd);
 exit(1);
}

The makefile is shown below:
all:
 xscale-linux-gcc –o xxxx xxxx.c –lmoxalib

UC-8410 LX User’s Manual Programmer’s Guide

 5-9

Digital I/O
Digital Output channels can be set to high or low. The channels are controlled by the function call
set_dout_state(). The Digital Input channels can be used to detect the state change of the digital
input signal. The DI channels can also be used to detect whether or not the state of a digital signal
changes during a fixed period of time. This can be done with the function call set_din_event().
Moxa provides 5 function calls to handle digital I/O state changes and event handling.

Application Programming Interface
Return error code definitions:

#define DIO_ERROR_PORT -1 // no such port
#define DIO_ERROR_MODE -2 // no such mode or state
#define DIO_ERROR_CONTROL -3 // open or ioctl fail
#define DIO_ERROR_DURATION -4 // The value of duration is not 0 or not in the range,
40 <= duration <= 3600000 milliseconds (1 hour)
#define DIO_ERROR_DURATION_20MS -5 // The value of duration must be a multiple of 20 ms
#define DIO_OK 0
The definition for DIN and DOUT:
#define DIO_HIGH 1
#define DIO_LOW 0

int set_dout_state(int doport, int state)

Description: To set the DOUT port to high or low state.
Input: int doport - which DOUT port you want to set. Port starts from 0 to 3.
int state - to set high or low state; DIO_HIGH (1) for high, DIO_LOW (0) for low.
Output: none.
Return: reference the error code.

int get_din_state(int diport, int *state)
Description: To get the DIN port state.
Input: int diport - get the current state of which DIN port. Port numbering is from 0 to 3.
int *state - save the current state.
Output: state - DIO_HIGH (1) for high, DIO_LOW (0) for low.
Return: reference the error code.

int get_dout_state(int doport, int *state)
Description: To get the DOUT port state.
Input: int doport - get the current state of which DOUT port.
int *state - save the current state.
Output: state - DIO_HIGH (1) for high, DIO_LOW (0) for low.
Return: reference the error code.

int set_din_event(int diport, void (*func)(int diport), int mode, long int duration)
Description: Set the event for DIN when the state is changed from high to low or from low
to high.
Input: int diport - the port that will be used to detect the DIN event.
Port numbering is from 0 to 3.
void (*func) (int diport) - Not NULL
> Returns the call back function. When the event occurs, the call back function will be
invoked.
NULL
> Clears this event

int mode DIN_EVENT_HIGH_TO_LOW
(1): from high to low
DIN_EVENT_LOW_TO_HIGH
(0): from low to high

UC-8410 LX User’s Manual Programmer’s Guide

 5-10

DIN_EVENT_CLEAR
(-1): clear this event
unsigned long duration - 0: detect the din event > DIN_EVENT_HIGH_TO_LOW or
DIN_EVENT_LOW_TO_HIGH> without duration
- Not 0
> detect the din event
DIN_EVENT_HIGH_TO_LOW or
DIN_EVENT_LOW_TO_HIGH with

duration. The value of “duration” must be a
multiple of 20 milliseconds. The range of
“duration” is 0, or 40 <= duration <= 3600000
milliseconds. The error of the measurement is
24 ms. For example, if the DIN duration is
200 ms, this event will be generated when the
DIN pin stays in the same state for a time
between 176 ms and 200 ms.

Output: none.
Return: reference the error code.

int get_din_event(int diport, int *mode, long int *duration)
Description: To retrieve the DIN event configuration, including mode
(DIN_EVENT_HIGH_TO_LOW or DIN_EVENT_LOW_TO_HIGH), and the value of
“duration.”
Input: int diport - which DIN port you want to retrieve.
- The port whose din event setting we wish to retrieve
int *mode - save which event is set.
unsigned long *duration - the duration of the DIN port is kept in high or low state.
- return to the current duration value of diport
Output: mode DIN_EVENT_HIGH_TO_LOW
(1): from high to low
DIN_EVENT_LOW_TO_HIGH(0): from low to high
DIN_EVENT_CLEAR(-1): clear this event
duration The value of duration should be 0 or 40 <= duration
<= 3600000 milliseconds.
Return: reference the error code.

Special Note
Do not forget to link to the library libmoxalib.a for DI/DO programming, and also include the
header file moxadevice.h. The DI/DO library only can be used by one program at a time.

Examples
Example 1
File Name: tdio.c
Description: The program indicates to connect DO1 to DI1, change the digital output state to high
or low by manual input, and then detect and count the state changed events from DI1.
#include <stdio.h>
#include <stdlib.h>
#include <moxadevice.h>
#include <fcntl.h>
#ifdef DEBUG
#define dbg_printf(x...) printf(x)
#else
#define dbg_printf(x...)
#endif
#define MIN_DURATION 40

UC-8410 LX User’s Manual Programmer’s Guide

 5-11

static char *DataString[2]={“Low “, “High “};
static void hightolowevent(int diport)
{
printf(“\nDIN port %d high to low.\n”, diport);
}
static void lowtohighevent(int diport)
{
printf(“\nDIN port %d low to high.\n”, diport);
}
int main(int argc, char * argv[])
{
int i, j, state, retval;
unsigned long duration;
while(1) {
printf(“\nSelect a number of menu, other key to exit. \n\
1. set high to low event \n\
2. get now data. \n\
3. set low to high event \n\
4. clear event \n\
5. set high data. \n\
6. set low data. \n\
7. quit \n\
8. show event and duration \n\
Choose : “);
retval =0;
scanf(“%d”, &i);
if (i == 1) { // set high to low event
printf(“Please keyin the DIN number : “);
scanf(“%d”, &i);
printf(“Please input the DIN duration, this minimun value must be over %d : “,

MIN_DURATION);
scanf(“%lu”, &duration);
retval=set_din_event(i, hightolowevent, DIN_EVENT_HIGH_TO_LOW, duration);

} else if (i == 2) { // get now data
printf(“DIN data : “);
for (j=0; j<4; j++) {
get_din_state(j, &state);
printf(“%s”, DataString[state]);

}
printf(“\n”);
printf(“DOUT data : “);
for (j=0; j<MAX_DOUT_PORT; j++) {
get_dout_state(j, &state);
printf(“%s”, DataString[state]);

}
printf(“\n”);
} else if (i == 3) { // set low to high event
printf(“Please keyin the DIN number : “);
scanf(“%d”, &i);
printf(“Please input the DIN duration, this minimun value must be over %d :”,

MIN_DURATION);
scanf(“%lu”, &duration);
retval = set_din_event(i, lowtohighevent, DIN_EVENT_LOW_TO_HIGH, duration);

} else if (i == 4) { // clear event
printf(“Please keyin the DIN number : “);
scanf(“%d”, &i);
retval=set_din_event(i, NULL, DIN_EVENT_CLEAR, 0);

} else if (i == 5) { // set high data
printf(“Please keyin the DOUT number : “);
scanf(“%d”, &i);
retval=set_dout_state(i, 1);

} else if (i == 6) { // set low data
printf(“Please keyin the DOUT number : “);
scanf(“%d”, &i);
retval=set_dout_state(i, 0);

} else if (i == 7) { // quit
break;

} else if (i == 8) { // show event and duration

UC-8410 LX User’s Manual Programmer’s Guide

 5-12

printf(“Event:\n”);
for (j=0; j<MAX_DOUT_PORT; j++) {
retval=get_din_event(j, &i, &duration);
switch (i) {
case DIN_EVENT_HIGH_TO_LOW :
printf(“(htl,%lu)”, duration);
break;

case DIN_EVENT_LOW_TO_HIGH :
printf(“(lth,%lu)”, duration);
break;

case DIN_EVENT_CLEAR :
printf(“(clr,%lu)”, duration);
break;

default :
printf(“err “);
break;

}
}
printf(“\n”);

} else {
printf(“Select error, please select again !\n”);

}
switch(retval) {
case DIO_ERROR_PORT:
printf(“DIO error port\n”);
break;

case DIO_ERROR_MODE:
printf(“DIO error mode\n”);
break;

case DIO_ERROR_CONTROL:
printf(“DIO error control\n”);
break;

case DIO_ERROR_DURATION:
printf(“DIO error duratoin\n”);

case DIO_ERROR_DURATION_20MS:
printf(“DIO error! The duratoin is not a multiple of 20 ms\n”);
break;

}
}
return 0;

}

DIO Program Make File Example
FNAME=tdio
CC=xscale-linux-gcc
STRIP=xscale-linux-strip
release:

$(CC) -o $(FNAME) $(FNAME).c -lmoxalib -lpthread
$(STRIP) -s $(FNAME)

debug:
$(CC) -DDEBUG -o $(FNAME)-dbg $(FNAME).cxx -lmoxalib -lpthread

clean:
/bin/rm -f $(FNAME) $(FNAME)-dbg *.o

UC-8410 LX User’s Manual Programmer’s Guide

 5-13

UART
The normal tty device node is located at /dev/ttyM0 … ttyM7, and the modem tty device node is
located at /dev/cum0 … cum7.

The UC-8410 supports Linux standard termios control. The Moxa UART Device API allows you
to configure ttyM0 to ttyM7 as RS-232, RS-422, 4-wire RS-485, or 2-wire RS-485. The UC-8410
supports RS-232, RS-422, 2-wire RS-485, and 4-wire RS485.

You must include <moxadevice.h>.
#define RS232_MODE 0
#define RS485_2WIRE_MODE 1
#define RS422_MODE 2
#define RS485_4WIRE_MODE 3

1. Function: MOXA_SET_OP_MODE
int ioctl(fd, MOXA_SET_OP_MODE, &mode)

Description
Set the interface mode. Argument 3 mode will pass to the UART device driver and change it.

2. Function: MOXA_GET_OP_MODE
int ioctl(fd, MOXA_GET_OP_MODE, &mode)

Description
Get the interface mode. Argument 3 mode will return the interface mode.

There are two Moxa private ioctl commands for setting up special baudrates.

Function: MOXA_SET_SPECIAL_BAUD_RATE
Function: MOXA_GET_SPECIAL_BAUD_RATE

If you use this ioctl to set a special baudrate, the termios cflag will be B4000000, in which case the
B4000000 definition will be different. If the baudrate you get from termios (or from calling
tcgetattr()) is B4000000, you must call ioctl with MOXA_GET_SPECIAL_BAUD_RATE to get
the actual baudrate.

Setinterface
The Serial Port Expansion Module has 8 serial ports, labeled ttyM0 to ttyM7. The ports support
RS-232, RS-422, and RS-485 2-wire and 4-wire operation modes with baudrate settings up to
921600 bps.

The default operation mode is set to RS-232. You can use the setinterface command to change the
serial port operation mode.

Usage: setinterface device-node [interface-no]

device-node -- /dev/ttyMn; n = 0,1,2,...

UC-8410 LX User’s Manual Programmer’s Guide

 5-14

interface-no -- As shown in the following table:

interface-no Operation Mode
None Display current setting

0 RS-232
1 RS-485 2-wire
2 RS-422
3 RS-485 4-wire

The following example sets /dev/ttyM0 to RS-422 mode

Example for setting the baudrate
#include <moxadevice.h>
#include <termios.h>
struct termios term;
int fd, speed;
fd = open(“/dev/ttyM0”, O_RDWR);
tcgetattr(fd, &term);
term.c_cflag &= ~(CBAUD | CBAUDEX);
term.c_cflag |= B4000000;
tcsetattr(fd, TCSANOW, &term);
speed = 500000;
ioctl(fd, MOXA_SET_SPECIAL_BAUD_RATE, &speed);

Example for getting the baudrate
 #include <moxadevice.h>
 #include <termios.h>
 struct termios term;
 int fd, speed;
 fd = open(“/dev/ttyM0”, O_RDWR);
 tcgetattr(fd, &term);
 if ((term.c_cflag & (CBAUD|CBAUDEX)) != B4000000)
 {// follow the standard termios baud rate define} else
 {ioctl(fd, MOXA_GET_SPECIAL_BAUD_RATE, &speed);}

Baudrate inaccuracy
Divisor = 921600/Target Baud Rate. (Only Integer part)
ENUM = 8 * (921600/Targer - Divisor) (Round up or down)
Inaccuracy = (Target Baud Rate – 921600/(Divisor + (ENUM/8))) * 100%
E.g.,
To calculate 500000 bps
Divisor = 1, ENUM = 7,
Inaccuracy = 1.7%

*The Inaccuracy should less than 2% for the device to work reliably.

DA682:~# setinterface /dev/ttyM0 2
DA682:~# setinterface /dev/ttyM0
Now setting is RS422 interface.
DA682:~#

UC-8410 LX User’s Manual Programmer’s Guide

 5-15

Special Note
1. If the target baudrate is not a special baudrate (e.g., 50, 75, 110, 134, 150, 200, 300, 600, 1200,

1800, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600), the termios
cflag will be set to the same flag.

2. If you use stty to get the serial information, you will get a speed equal to 0.

SRAM
1. Introduction

The UC-8410 provides 256 KB of embedded SRAM. As there is a system battery inside the
computer, the SRAM can work and be used to keep data even when the system is crashed.
This means that the data stored on the SRAM will not be lost after the UC-8410 is powered
off.

2. How the SRAM works

The SRAM device can be programmed through the file /dev/sram. This means that you can
read from or write to /dev/sram to store data on the embedded SRAM. The following example
illustrates how to do this:

/**
History :
 Versoin Author Date Comment
 1.0 Jared Wu. 09-11-2008 Write a pattern to SRAM.
**/
#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <linux/kd.h>

#define SRAM_SIZE 0x00040000 // 256 Kbytes
static char sram_buf1[SRAM_SIZE], sram_buf2[SRAM_SIZE];

int main(int argc, char * argv[])
{
 int fd, len;
 unsigned long ms=0;
 char pattern=‘9’;

 if (argc > 2) {
 printf(“Usage: %s [pattern]\n”);
 exit(0);
 }

 if (argc == 2) {
 pattern=argv[1][0];
 printf(“pattern:%c\n”, pattern);
 }

 fd = open(“/dev/sram”, O_RDWR);

UC-8410 LX User’s Manual Programmer’s Guide

 5-16

 if(fd < 0) {
 printf(“Open /dev/sram fail”);
 exit(0);
 }

 // Write the sram with patern
 memset(sram_buf1, pattern, sizeof(sram_buf1));
 len=write(fd, sram_buf1, sizeof(sram_buf1));
 if(len < 0) {
 printf(“Write /dev/sram fail”);
 exit(0);
 }

 printf(“The content is written\n”);

 close(fd);
}
/**
History :
 Versoin Author Date Comment
 1.0 Jared Wu. 09-11-2008 Read from the SRAM and compare with some pattern.
**/
#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <linux/kd.h>

#define SRAM_SIZE 0x00040000 // 256 Kbytes
static char sram_buf1[SRAM_SIZE], sram_buf2[SRAM_SIZE];

int main(int argc, char * argv[])
{
 int fd, len;
 unsigned long ms=0;
 char pattern=‘9’;

 if (argc > 2) {
 printf(“Usage: %s [pattern]\n”);
 exit(0);
 }

 if (argc == 2) {
 pattern=argv[1][0];
 printf(“pattern:%c\n”, pattern);
 }

 fd = open(“/dev/sram”, O_RDWR);
 if(fd < 0) {
 printf(“Open /dev/sram fail”);
 exit(0);
 }

UC-8410 LX User’s Manual Programmer’s Guide

 5-17

 // Write the sram with pattern
 memset(sram_buf1, pattern, sizeof(sram_buf1));

 // Read from sram and compare with pattern
 len=read(fd, sram_buf2, sizeof(sram_buf2));
 if(len < 0) {
 printf(“Read from /dev/sram fail\n”);
 exit(0);
 }

 if (memcmp(sram_buf1, sram_buf2, SRAM_SIZE) != 0) {
 printf(“Memory compared fail\n”);
 exit(0);
 }

 printf(“The content is identical\n”);

 close(fd);
}

Make File Example
The following Makefile file sample code is copied from the Hello example on the UC-8410’s
CD-ROM.
CC = xscale-linux-gcc
CPP = xscale-linux-gcc
SOURCES = hello.c

OBJS = $(SOURCES:.c=.o)

all: hello

hello: $(OBJS)
 $(CC) -o $@ $^ $(LDFLAGS) $(LIBS)

clean:
 rm -f $(OBJS) hello core *.gdb

Software Lock
“Software Lock” is an innovative technology developed by the Moxa engineering team, and can
be used by a system integrator or developer to protect applications from being copied. An
application is compiled into a binary format bound to the embedded computer, and the operating
system that the application runs on. As long as it is obtained from the computer, it can be installed
on the same hardware and under the same operating system, resulting in a loss of the add-on value
created by the developer.

Users can deploy this data encryption method to develop the software for the applications. The
binary file associated with each of your applications needs to undergo an additional encryption
process after you have developed it. The process requires you to install an encryption key in the
target computer.

UC-8410 LX User’s Manual Programmer’s Guide

 5-18

1. Choose an encryption key (e.g.,”ABigKey”) and install it in the target computer by a
pre-utility program called ‘setkey’.
#setkey ABigKey

NOTE: If you would like to clear the encryption key on the target computer, use the following
command.
#setkey ““

2. Develop and compile your program on the development PC.

3. On the development PC, run the utility program ‘binencryptor’ to encrypt your program with
an encryption key.
#binencryptor yourProgram ABigKey

4. Upload the encrypted program file to the target computer by FTP or NFS and test the program.

The encryption key is a computer-wise key. This means that the computer has only one key
installed. Running the program ‘setkey’ multiple times overrides the existing key.

To prove the effectiveness of this software protection mechanism, prepare a target computer
on which an encryption key has not been installed, or install a key different from that used to
encrypt your program. In either case, the encrypted program fails immediately.

This mechanism also allows computers with an encryption key installed to bypass programs
that are not encrypted. This is handy in the development phase since you can develop your
programs and test them cleanly on the target computer.

AA
Appendix A System Commands

Busybox (V1.10.4): Linux normal command utility
collection

File manager
cp copy file
ls list file
ln make symbolic link file
mount mount and check file system
rm delete file
chmod change file owner & group & user
chown change file owner
chgrp change file group
chroot runs a command with a specified root directory.
sync sync file system; save system file buffer to hardware
mv move file
pwd display active file directly
df list active file system space
mkdir make new directory
rmdir delete directory
find search for files in a directory hierarchy
head output the first part of files
mkfifo creates a FIFO, special character file, or special block file with the specified

name
mknod creates a FIFO, special character file, or special block file with the specified

name
touch change file timestamps
which Locate a program file in the user’s path.

UC-8410LX User’s Manual System Commands

 A-2

Editor
vi text editor
cat dump file context
grep Search string on file
egrep search string on file of Extended regular expressions
fgrep Search file(s) for lines that match a fixed string
cut Get string on file
find Find file where are there
more dump file by one page
test test if file exists or not
sleep Sleep (seconds)
usleep suspend execution for microsecond intervals
echo echo string
sed Steam editor
awk pattern-directed scanning and processing language
expand Converts all tabs to spaces
tail Print the last 10 lines of each FILE to standard output.
tar The GNU version of the tar archiving utility
tr Translate, squeeze, and/or delete characters
wc Print byte, word, and line counts, count the number of bytes,

whitespace-separated words, and newlines in each given FILE, or standard
input if non are given or for a FILE of ‘-’.

Network
arp manipulate the system ARP cache
ping ping to test network
route routing table manager
netstat display network status
ifconfig set network IP address
tftp IPV4 Trivial File Transfer Protocol client
telnet Connects the local host with a remote host, using the Telnet interface.
ftp file transfer protocol
ifdown, ifup bring a network interface up, or take a network interface down
ip show / manipulate routing, devices, policy routing and tunnels
tcpsvd TCP/IP service daemon
wget The non-interactive network downloader.

Process
kill kill process
ps display now running process
fuser identify processes using files or sockets
killall sends a signal to all processes running any of the specified commands
nice, renice run a program with modified scheduling priority / alter priority of running

processes
pidof find the process ID of a running program
run-parts run scripts or programs in a directory
start-stop-deamon start and stop system daemon programs
top display Linux tasks

UC-8410LX User’s Manual System Commands

 A-3

Modules
insmod insert a module into the kernel
lsmod shows which kernel modules are currently loaded
modprobe intelligently adds or removes a module from the Linux kernel
rmmod remove module from kernel

Other
dmesg dump kernel log message
zcat Dump .gz file context
free display system memory usage
date print or set the system date and time
env run a program in a modified environment
clear clear the terminal screen
reboot reboot or power off/on the server
halt halt the server
du estimate file space usage
gzip, gunzip compress or expand files
hostname show system’s host namebasename return filename or directory portion of

pathname
dirname Convert a full pathname to just a path
expr evaluate arguments as an expression
false Do nothing, returning a non-zero (false) exit status
true Do nothing, successfully
fdisk Partition table manipulator for Linux
hwclock A tool for accessing the Hardware Clock
id Print the user identity
klogd Kernel log daemon
logger a shell command interface to the syslog system log module
md5sum compute and check MD5 message digest
mesg control write access to your terminal
mktemp make temporary file name
nohup No Hang Up
reset terminal initialization
stty change and print terminal line settings
syslogd Linux system logging utilities
uname Print system information, print information about the machine and operating

system it is running on
uptime Determine how long the system has been running
xargs build and execute command lines from standard input
yes ‘yes’ prints the command line arguments, separated by spaces and followed

by a newline, forever until it is killed.
tee Copy standard input to each FILE, and also to standard output.

UC-8410LX User’s Manual System Commands

 A-4

Special Moxa Utilities
setkey set the software encryption key
upgradehfm upgrade firmware utility
libmoxalib.a Moxa perporitary libraries
upramdisk mount ramdisk
downramdisk unmount ramdisk
kversion show kernel version
setinterface set /dev/ttyMn to RS232/RS485-2WIRES/RS422/ RS485-4WIRES

	1. Introduction
	Overview
	Software Architecture
	Journaling Flash File System (JFFS2)
	Software Features

	2. Getting Started
	Powering on the UC-8410
	Connecting the UC-8410 to a PC
	Serial Console
	Telnet Console
	SSH Console

	Configuring the Ethernet Interface
	Modifying Network Settings with the Serial Console
	Modifying Network Settings over the Network

	Test Program─Developing Hello.c
	Installing the Tool Chain (Linux)
	Checking the Flash Memory Space
	Compiling Hello.c
	Uploading and Running the “Hello” Program

	3. Managing Embedded Linux
	System Version Information
	Firmware Upgrade
	Upgrading the Firmware
	Loading Factory Defaults

	Enabling and Disabling Daemons
	Setting the Run-Level
	Setting the System Time
	TZ variable
	/etc/timezone

	Adjusting the System Time
	Setting the Time Manually
	NTP Client
	Updating the Time Automatically

	Cron—Daemon to Execute Scheduled Commands
	Connecting Peripherals
	USB Mass Storage
	CF Mass Storage

	4. Managing Communication
	Telnet/FTP
	DNS
	Web Service—Apache
	IPTABLES
	NAT
	NAT Example
	Enabling NAT at Bootup

	Dial-up Service—PPP
	PPPoE
	NFS (Network File System) Client
	Setting up the UC-8410 as an NFS Client

	Mail
	SNMP
	OpenVPN
	Package Management—ipkg

	5. Programmer’s Guide
	Flash Memory Map
	Linux Tool Chain Introduction
	Debugging with GDB
	Device API
	RTC (Real Time Clock)
	Buzzer
	WDT (Watch Dog Timer)
	Digital I/O
	UART
	SRAM
	Make File Example
	Software Lock

	A. System Commands
	Busybox (V1.10.4): Linux normal command utility collection
	File manager
	Editor
	Network
	Process
	Modules
	Other
	Special Moxa Utilities

